[1]李锋. 粒子群模糊聚类算法在入侵检测中的研究[J].计算机技术与发展,2014,24(12):138-141.
 LI Feng. Research on Fuzzy Clustering Algorithm Based on PSO in IDS[J].,2014,24(12):138-141.
点击复制

 粒子群模糊聚类算法在入侵检测中的研究()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
24
期数:
2014年12期
页码:
138-141
栏目:
安全与防范
出版日期:
2014-12-10

文章信息/Info

Title:
 Research on Fuzzy Clustering Algorithm Based on PSO in IDS
文章编号:
1673-629X(2014)12-0138-04
作者:
 李锋
 广东交通职业技术学院
Author(s):
 LI Feng
关键词:
 模糊C均值聚类算法粒子群算法模糊聚类入侵检测
Keywords:
 FCM algorithmPSO algorithmfuzzy clusterIDS
分类号:
TP391
文献标志码:
A
摘要:
 目前模糊C均值聚类算法广泛应用于入侵检测算法中,但是存在聚类数目难以确定,目标函数的局部极小点使得算法容易陷入局部最优的现象,影响入侵检测的准确率。鉴于此,文中提出一种基于粒子群算法的模糊聚类算法,引入PSO全局搜索能力和粒子翻转变异操作,避免传统C均值聚类算法对孤立点敏感,容易陷入局部最优,过早收敛的问题。最后通过实验结果表明,新算法检测率明显优于C均值聚类算法,能很好地应用于目前入侵检测系统之中。
Abstract:
 Fuzzy C-means clustering algorithm is widely used in intrusion detection currently.But this algorithm has some shortcomings that is difficult to determine the clustering number and easy to fall into the local minimum when iterating,which can affect the accuracy of intrusion detection system.In view of this,propose a fuzzy clustering algorithm based on PSO algorithm,through introducing the PSO global search ability and particle inverting operation,avoid the problem of falling into local minimum and premature convergence.Final-ly,the experimental results show that the new algorithm has higher detection rate than the C-mean clustering algorithm,which can be well applied to intrusion detection systems.

相似文献/References:

[1]杨德璋 李雷 申方成.快速多规则约束关联算法的入侵检测研究[J].计算机技术与发展,2010,(12):173.
 YANG De-zhang,LI Lei,SHEN Fang-cheng.Intrusion Detection Technology Research Based on Fast Multi-association Mining Algorithm[J].,2010,(12):173.
[2]张志宏,吴庆波,邵立松,等.基于飞腾平台TOE协议栈的设计与实现[J].计算机技术与发展,2014,24(07):1.
 ZHANG Zhi-hong,WU Qing-bo,SHAO Li-song,et al. Design and Implementation of TCP/IP Offload Engine Protocol Stack Based on FT Platform[J].,2014,24(12):1.
[3]梁文快,李毅. 改进的基因表达算法对航班优化排序问题研究[J].计算机技术与发展,2014,24(07):5.
 LIANG Wen-kuai,LI Yi. Research on Optimization of Flight Scheduling Problem Based on Improved Gene Expression Algorithm[J].,2014,24(12):5.
[4]黄静,王枫,谢志新,等. EAST文档管理系统的设计与实现[J].计算机技术与发展,2014,24(07):13.
 HUANG Jing,WANG Feng,XIE Zhi-xin,et al. Design and Implementation of EAST Document Management System[J].,2014,24(12):13.
[5]侯善江[],张代远[][][]. 基于样条权函数神经网络P2P流量识别方法[J].计算机技术与发展,2014,24(07):21.
 HOU Shan-jiang[],ZHANG Dai-yuan[][][]. P2P Traffic Identification Based on Spline Weight Function Neural Network[J].,2014,24(12):21.
[6]李璨,耿国华,李康,等. 一种基于三维模型的文物碎片线图生成方法[J].计算机技术与发展,2014,24(07):25.
 LI Can,GENG Guo-hua,LI Kang,et al. A Method of Obtaining Cultural Debris’ s Line Chart Based on Three-dimensional Model[J].,2014,24(12):25.
[7]翁鹤,皮德常. 混沌RBF神经网络异常检测算法[J].计算机技术与发展,2014,24(07):29.
 WENG He,PI De-chang. Chaotic RBF Neural Network Anomaly Detection Algorithm[J].,2014,24(12):29.
[8]刘茜[],荆晓远[],李文倩[],等. 基于流形学习的正交稀疏保留投影[J].计算机技术与发展,2014,24(07):34.
 LIU Qian[],JING Xiao-yuan[,LI Wen-qian[],et al. Orthogonal Sparsity Preserving Projections Based on Manifold Learning[J].,2014,24(12):34.
[9]尚福华,李想,巩淼. 基于模糊框架-产生式知识表示及推理研究[J].计算机技术与发展,2014,24(07):38.
 SHANG Fu-hua,LI Xiang,GONG Miao. Research on Knowledge Representation and Inference Based on Fuzzy Framework-production[J].,2014,24(12):38.
[10]叶偲,李良福,肖樟树. 一种去除运动目标重影的图像镶嵌方法研究[J].计算机技术与发展,2014,24(07):43.
 YE Si,LI Liang-fu,XIAO Zhang-shu. Research of an Image Mosaic Method for Removing Ghost of Moving Targets[J].,2014,24(12):43.
[11]葛林涛,徐桂琼. 基于模糊C均值聚类有效性的协同过滤算法[J].计算机技术与发展,2016,26(01):22.
 E Lin-tao,XU Gui-qiong. A Collaborative Filtering Algorithm Based on Fuzzy C-means Clustering Validity[J].,2016,26(12):22.

更新日期/Last Update: 2015-04-15