[1]袁小艳. 改进的混合人工蜂群算法的研究[J].计算机技术与发展,2014,24(12):92-95.
 YUAN Xiao-yan. Research on Modified Hybrid Artificial Colony Algorithm[J].,2014,24(12):92-95.
点击复制

 改进的混合人工蜂群算法的研究()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
24
期数:
2014年12期
页码:
92-95
栏目:
智能、算法、系统工程
出版日期:
2014-12-10

文章信息/Info

Title:
 Research on Modified Hybrid Artificial Colony Algorithm
文章编号:
1673-629X(2014)12-0092-04
作者:
 袁小艳
 四川文理学院 计算机学院
Author(s):
 YUAN Xiao-yan
关键词:
 人工蜂群混合初始化种群检索方程全局优化
Keywords:
 artificial bee colonymixed initialization populationsearch equationglobal optimization
分类号:
TP312
文献标志码:
A
摘要:
 为了解决基本人工蜂群算法(ABC)早熟收敛、容易陷入局部最优、收敛精度不高等问题,提出一种混合改进的人工蜂群算法(RABC)。首先,为了平衡ABC的全局寻优能力,在初始化种群阶段引入了混沌算子和逆向学习算子;而后,为了提高局部寻优能力,在采蜜蜂的检索方程中引入了最优引导个体;最后,为了提高收敛精度和加快后期收敛速度,改进了侦察蜂的检索机制。为了验证RABC算法的收敛效果,通过在3个标准测试函数上的仿真实验,并与基本ABC算法的比较,发现RABC的收敛性能有显著提高。
Abstract:
 In order to solve the problem of the basic Artificial Bee Colony (ABC)algorithm,such as the premature convergence,falling into local optimum easily,low convergence precision,put forward an Revised Artificial Bee Colony (RABC)algorithm.First,in order to balance the ABC global optimization ability,in the initialized population stage introduce the chaos operator and reverse learning operator. Then in order to improve the local optimization ability,in mining bee search equation introduce the best guide in the individual.Finally, in order to improve the convergence precision and speed up the convergence speed,improve the search mechanism of scout bees.In order to verify the convergence effect of RABC,through the simulation experiments on three standard test functions,and compared with the bas-ic ABC algorithm,found that the convergence of the RABC have improved significantly.

相似文献/References:

[1]张志宏,吴庆波,邵立松,等.基于飞腾平台TOE协议栈的设计与实现[J].计算机技术与发展,2014,24(07):1.
 ZHANG Zhi-hong,WU Qing-bo,SHAO Li-song,et al. Design and Implementation of TCP/IP Offload Engine Protocol Stack Based on FT Platform[J].,2014,24(12):1.
[2]梁文快,李毅. 改进的基因表达算法对航班优化排序问题研究[J].计算机技术与发展,2014,24(07):5.
 LIANG Wen-kuai,LI Yi. Research on Optimization of Flight Scheduling Problem Based on Improved Gene Expression Algorithm[J].,2014,24(12):5.
[3]黄静,王枫,谢志新,等. EAST文档管理系统的设计与实现[J].计算机技术与发展,2014,24(07):13.
 HUANG Jing,WANG Feng,XIE Zhi-xin,et al. Design and Implementation of EAST Document Management System[J].,2014,24(12):13.
[4]侯善江[],张代远[][][]. 基于样条权函数神经网络P2P流量识别方法[J].计算机技术与发展,2014,24(07):21.
 HOU Shan-jiang[],ZHANG Dai-yuan[][][]. P2P Traffic Identification Based on Spline Weight Function Neural Network[J].,2014,24(12):21.
[5]李璨,耿国华,李康,等. 一种基于三维模型的文物碎片线图生成方法[J].计算机技术与发展,2014,24(07):25.
 LI Can,GENG Guo-hua,LI Kang,et al. A Method of Obtaining Cultural Debris’ s Line Chart Based on Three-dimensional Model[J].,2014,24(12):25.
[6]翁鹤,皮德常. 混沌RBF神经网络异常检测算法[J].计算机技术与发展,2014,24(07):29.
 WENG He,PI De-chang. Chaotic RBF Neural Network Anomaly Detection Algorithm[J].,2014,24(12):29.
[7]刘茜[],荆晓远[],李文倩[],等. 基于流形学习的正交稀疏保留投影[J].计算机技术与发展,2014,24(07):34.
 LIU Qian[],JING Xiao-yuan[,LI Wen-qian[],et al. Orthogonal Sparsity Preserving Projections Based on Manifold Learning[J].,2014,24(12):34.
[8]尚福华,李想,巩淼. 基于模糊框架-产生式知识表示及推理研究[J].计算机技术与发展,2014,24(07):38.
 SHANG Fu-hua,LI Xiang,GONG Miao. Research on Knowledge Representation and Inference Based on Fuzzy Framework-production[J].,2014,24(12):38.
[9]叶偲,李良福,肖樟树. 一种去除运动目标重影的图像镶嵌方法研究[J].计算机技术与发展,2014,24(07):43.
 YE Si,LI Liang-fu,XIAO Zhang-shu. Research of an Image Mosaic Method for Removing Ghost of Moving Targets[J].,2014,24(12):43.
[10]余松平[][],蔡志平[],吴建进[],等. GSM-R信令监测选择录音系统设计与实现[J].计算机技术与发展,2014,24(07):47.
 YU Song-ping[][],CAI Zhi-ping[] WU Jian-jin[],GU Feng-zhi[]. Design and Implementation of an Optional Voice Recording System Based on GSM-R Signaling Monitoring[J].,2014,24(12):47.
[11]吴少华,单剑锋. 基于改进蜂群算法的数字信号调制识别[J].计算机技术与发展,2016,26(07):46.
  A Modulation Identification Algorithm for Digital Signals Based on Modified Artificial Bee Colony Algorithm[J].,2016,26(12):46.

更新日期/Last Update: 2015-04-15