[1]张培颖[],房龙云[]. 多特征结合的词语相似度计算模型[J].计算机技术与发展,2014,24(12):37-40.
 ZHANG Pei-ying[],FANG Long-yun[]. Word Similarity Computation Model of Multi-features Combination[J].,2014,24(12):37-40.
点击复制

 多特征结合的词语相似度计算模型()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
24
期数:
2014年12期
页码:
37-40
栏目:
智能、算法、系统工程
出版日期:
2014-12-10

文章信息/Info

Title:
 Word Similarity Computation Model of Multi-features Combination
文章编号:
1673-629X(2014)12-0037-04
作者:
 张培颖[1] 房龙云[2]
1. 中国石油大学 华东 计算机与通信工程学院;2.哈尔滨工业大学深圳研究生院 计算机科学与技术学院
Author(s):
 ZHANG Pei-ying[1]FANG Long-yun[2]
关键词:
 词语相似度知网同义词词林语义距离
Keywords:
 word similarityHowNetTongyici Cilinsemantic distance
分类号:
TP391.1
文献标志码:
A
摘要:
 词语相似度计算在基于实例的机器翻译、信息检索、自动问答系统等有着广泛的应用。词语相似度的计算一般都是在基于《知网》的义原的基础上,通过计算概念之间的相似度来获取。文中在综合考虑义原距离、义原深度、义原宽度、义原密度和义原重合度的基础上,利用多特征结合的方法计算词语相似度。为了验证算法的合理性,利用Miller和Charles文献给出的基准词作为测试集合,将计算得到的词语相似度的值与专家值进行比较,计算其皮尔逊相关系数,计算结果达到了0.852。实验结果表明多特征结合的词语相似度计算和专家评定的词语相似度计算非常吻合。
Abstract:
 Semantic similarity computing has been widely used in machine translation based on example,information retrieval and auto-matic question answering systems. Word similarity computation is generally based on the original in "HowNet",through calculating the degree of similarity between concepts to obtain. In this paper,in consideration of the original distance,depth,width,density and contact ratio,use the method with multi-features to compute word similarity. In order to verify the rationality of the algorithm,using the bench-mark of words given by Miller and Charles literature as a test set,make a comparison between the word similarity computation values and expert value,calculating the Pearson correlation coefficient,the calculation results is 0. 852. Experimental result show that the word simi-larity computation of multi-features combination is identical with expert estimation.

相似文献/References:

[1]王爽 熊德兰 赵会洋.基于论坛主题的网页褒贬倾向性识别[J].计算机技术与发展,2009,(09):111.
 WANG Shuang,XIONG De-lan,ZHAO Hui-yang.Appraisial Orientation Identification in WebPages Based on Forums Theme[J].,2009,(12):111.
[2]杨金柱 刘金岭.基于词语上下文的文本分类研究[J].计算机技术与发展,2011,(08):145.
 YANG Jin-zhu,LIU Jin-ling.Study of Text Classification Using Context[J].,2011,(12):145.
[3]张志宏,吴庆波,邵立松,等.基于飞腾平台TOE协议栈的设计与实现[J].计算机技术与发展,2014,24(07):1.
 ZHANG Zhi-hong,WU Qing-bo,SHAO Li-song,et al. Design and Implementation of TCP/IP Offload Engine Protocol Stack Based on FT Platform[J].,2014,24(12):1.
[4]梁文快,李毅. 改进的基因表达算法对航班优化排序问题研究[J].计算机技术与发展,2014,24(07):5.
 LIANG Wen-kuai,LI Yi. Research on Optimization of Flight Scheduling Problem Based on Improved Gene Expression Algorithm[J].,2014,24(12):5.
[5]黄静,王枫,谢志新,等. EAST文档管理系统的设计与实现[J].计算机技术与发展,2014,24(07):13.
 HUANG Jing,WANG Feng,XIE Zhi-xin,et al. Design and Implementation of EAST Document Management System[J].,2014,24(12):13.
[6]侯善江[],张代远[][][]. 基于样条权函数神经网络P2P流量识别方法[J].计算机技术与发展,2014,24(07):21.
 HOU Shan-jiang[],ZHANG Dai-yuan[][][]. P2P Traffic Identification Based on Spline Weight Function Neural Network[J].,2014,24(12):21.
[7]李璨,耿国华,李康,等. 一种基于三维模型的文物碎片线图生成方法[J].计算机技术与发展,2014,24(07):25.
 LI Can,GENG Guo-hua,LI Kang,et al. A Method of Obtaining Cultural Debris’ s Line Chart Based on Three-dimensional Model[J].,2014,24(12):25.
[8]翁鹤,皮德常. 混沌RBF神经网络异常检测算法[J].计算机技术与发展,2014,24(07):29.
 WENG He,PI De-chang. Chaotic RBF Neural Network Anomaly Detection Algorithm[J].,2014,24(12):29.
[9]刘茜[],荆晓远[],李文倩[],等. 基于流形学习的正交稀疏保留投影[J].计算机技术与发展,2014,24(07):34.
 LIU Qian[],JING Xiao-yuan[,LI Wen-qian[],et al. Orthogonal Sparsity Preserving Projections Based on Manifold Learning[J].,2014,24(12):34.
[10]尚福华,李想,巩淼. 基于模糊框架-产生式知识表示及推理研究[J].计算机技术与发展,2014,24(07):38.
 SHANG Fu-hua,LI Xiang,GONG Miao. Research on Knowledge Representation and Inference Based on Fuzzy Framework-production[J].,2014,24(12):38.
[11]王小林,陆骆勇,邰伟鹏. 基于信息熵的新的词语相似度算法研究[J].计算机技术与发展,2015,25(09):119.
 WANG Xiao-lin,LU Luo-yong,TAI Wei-peng. Research of a New Algorithm of Words Similarity Based on Information Entropy[J].,2015,25(12):119.
[12]闫红[],李付学[],周云[]. 基于HowNet句子相似度的计算[J].计算机技术与发展,2015,25(11):53.
 YAN Hong[],LI Fu-xue[],ZHOU Yun[]. Calculation of Sentence Similarity Based on HowNet[J].,2015,25(12):53.

更新日期/Last Update: 2015-04-15