[1]蒋云洁,王莉. 基于BP-DBN的认知网络端到端态势评估算法[J].计算机技术与发展,2014,24(11):148-151.
 JIANG Yun-jie,WANG Li. Cognitive Network End to End Situational Evaluation Algorithm Based on BP-DBN[J].,2014,24(11):148-151.
点击复制

 基于BP-DBN的认知网络端到端态势评估算法()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
24
期数:
2014年11期
页码:
148-151
栏目:
智能、算法、系统工程
出版日期:
2014-11-10

文章信息/Info

Title:
 Cognitive Network End to End Situational Evaluation Algorithm Based on BP-DBN
文章编号:
1673-629X(2014)11-0148-04
作者:
 蒋云洁王莉
 南京邮电大学
Author(s):
 JIANG Yun-jieWANG Li
关键词:
 认知网络BP-深度信念网络端到端态势评估受限波尔兹曼机
Keywords:
 cognitive networkBP-DBNend to end situational evaluationRBM
分类号:
TP301.6
文献标志码:
A
摘要:
 文中提出了一种基于BP-深度信念网络( BP-DBN)的端到端态势评估算法,实现网络端到端态势等级判定。基于提出的分布式态势评估架构,使用BP-DBN分别构建认知域网元评估值、局部态势评估值和端到端态势评估值三者间的映射关系,最后实现端到端态势等级定性评估。实验结果表明,基于少量标记训练样本,BP-DBN测试错误率低,能够保证评估准确性,同时提出的评估算法能够有效评估端到端网络态势等级。
Abstract:
 Cognitive network end to end situational evaluation algorithm based on BP-DBN is proposed to judge the situational level. Based on distributed situational evaluation architecture,BP-DBN is used to construct mapping relations among network element evalua-tion value in cognitive domain,local situational evaluation value and global situational evaluation value. End to end situational evaluation can be qualitatively evaluated. Simulation results show that test error rate of BP-DBN is low based on less labeled samples,which can en-sure accuracy of evaluation,and the algorithm proposed can estimate end to end situational level effectively.

相似文献/References:

[1]张志宏,吴庆波,邵立松,等.基于飞腾平台TOE协议栈的设计与实现[J].计算机技术与发展,2014,24(07):1.
 ZHANG Zhi-hong,WU Qing-bo,SHAO Li-song,et al. Design and Implementation of TCP/IP Offload Engine Protocol Stack Based on FT Platform[J].,2014,24(11):1.
[2]梁文快,李毅. 改进的基因表达算法对航班优化排序问题研究[J].计算机技术与发展,2014,24(07):5.
 LIANG Wen-kuai,LI Yi. Research on Optimization of Flight Scheduling Problem Based on Improved Gene Expression Algorithm[J].,2014,24(11):5.
[3]黄静,王枫,谢志新,等. EAST文档管理系统的设计与实现[J].计算机技术与发展,2014,24(07):13.
 HUANG Jing,WANG Feng,XIE Zhi-xin,et al. Design and Implementation of EAST Document Management System[J].,2014,24(11):13.
[4]侯善江[],张代远[][][]. 基于样条权函数神经网络P2P流量识别方法[J].计算机技术与发展,2014,24(07):21.
 HOU Shan-jiang[],ZHANG Dai-yuan[][][]. P2P Traffic Identification Based on Spline Weight Function Neural Network[J].,2014,24(11):21.
[5]李璨,耿国华,李康,等. 一种基于三维模型的文物碎片线图生成方法[J].计算机技术与发展,2014,24(07):25.
 LI Can,GENG Guo-hua,LI Kang,et al. A Method of Obtaining Cultural Debris’ s Line Chart Based on Three-dimensional Model[J].,2014,24(11):25.
[6]翁鹤,皮德常. 混沌RBF神经网络异常检测算法[J].计算机技术与发展,2014,24(07):29.
 WENG He,PI De-chang. Chaotic RBF Neural Network Anomaly Detection Algorithm[J].,2014,24(11):29.
[7]刘茜[],荆晓远[],李文倩[],等. 基于流形学习的正交稀疏保留投影[J].计算机技术与发展,2014,24(07):34.
 LIU Qian[],JING Xiao-yuan[,LI Wen-qian[],et al. Orthogonal Sparsity Preserving Projections Based on Manifold Learning[J].,2014,24(11):34.
[8]尚福华,李想,巩淼. 基于模糊框架-产生式知识表示及推理研究[J].计算机技术与发展,2014,24(07):38.
 SHANG Fu-hua,LI Xiang,GONG Miao. Research on Knowledge Representation and Inference Based on Fuzzy Framework-production[J].,2014,24(11):38.
[9]叶偲,李良福,肖樟树. 一种去除运动目标重影的图像镶嵌方法研究[J].计算机技术与发展,2014,24(07):43.
 YE Si,LI Liang-fu,XIAO Zhang-shu. Research of an Image Mosaic Method for Removing Ghost of Moving Targets[J].,2014,24(11):43.
[10]余松平[][],蔡志平[],吴建进[],等. GSM-R信令监测选择录音系统设计与实现[J].计算机技术与发展,2014,24(07):47.
 YU Song-ping[][],CAI Zhi-ping[] WU Jian-jin[],GU Feng-zhi[]. Design and Implementation of an Optional Voice Recording System Based on GSM-R Signaling Monitoring[J].,2014,24(11):47.

更新日期/Last Update: 2015-04-14