[1]曹秀爽. 一种具有区域影响的人工萤火虫算法[J].计算机技术与发展,2014,24(11):135-138.
 CAO Xiu-shuang. An Artificial Glowworm Swarm Optimization Algorithm with Area of Influence[J].,2014,24(11):135-138.
点击复制

 一种具有区域影响的人工萤火虫算法()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
24
期数:
2014年11期
页码:
135-138
栏目:
智能、算法、系统工程
出版日期:
2014-11-10

文章信息/Info

Title:
 An Artificial Glowworm Swarm Optimization Algorithm with Area of Influence
文章编号:
1673-629X(2014)11-0135-04
作者:
 曹秀爽
 唐山学院 信息工程系
Author(s):
 CAO Xiu-shuang
 Glowworm Swarm Optimization(GSO) ;area of influence;Gaussian kernel function
关键词:
 萤火虫算法区域影响Gaussian核函数
分类号:
TP183
文献标志码:
A
摘要:
 受到自然界中萤火虫通过荧光进行信息交流的群体行为的启示,萤火虫算法被提出。它是一种新颖的仿生群智能优化算法。基本的萤火虫算法中,萤火虫个体间存在协作不足,易陷入局部最优的缺陷;考虑到萤火虫个体的区域影响作用,提出一种更接近社会上信息传递系统的萤火虫算法。该算法综合考虑了萤火虫个体的历史最优位置和萤火虫群体的历史最优位置对当前位置的影响作用,使相距较近的萤火虫个体能很快地得到信息并受其影响。实验仿真结果表明,区域影响下的萤火虫算法性能有了显著提高。
Abstract:
 Inspired by social behavior of glowworm swarm and the phenomenon of bioluminescent communication, Glowworm Swarm Optimization ( GSO) algorithm is developed as a novel bionic swarm intelligence optimization method. Based on the analysis of short-coming of basic GSO such as lack of collaboration among glowworm and easily falling into local optimal,and considering the influence of area of glowworm individual,propose a new GSO which is more close to social glowworm swarm system. The algorithm takes local optimal solutions and global optimal solution into account generally,which gets information quickly and can be affected among glow-worms which are nearby. The simulation results show that the GSO performance with area of influence has greatly improved.

相似文献/References:

[1]张志宏,吴庆波,邵立松,等.基于飞腾平台TOE协议栈的设计与实现[J].计算机技术与发展,2014,24(07):1.
 ZHANG Zhi-hong,WU Qing-bo,SHAO Li-song,et al. Design and Implementation of TCP/IP Offload Engine Protocol Stack Based on FT Platform[J].,2014,24(11):1.
[2]梁文快,李毅. 改进的基因表达算法对航班优化排序问题研究[J].计算机技术与发展,2014,24(07):5.
 LIANG Wen-kuai,LI Yi. Research on Optimization of Flight Scheduling Problem Based on Improved Gene Expression Algorithm[J].,2014,24(11):5.
[3]黄静,王枫,谢志新,等. EAST文档管理系统的设计与实现[J].计算机技术与发展,2014,24(07):13.
 HUANG Jing,WANG Feng,XIE Zhi-xin,et al. Design and Implementation of EAST Document Management System[J].,2014,24(11):13.
[4]侯善江[],张代远[][][]. 基于样条权函数神经网络P2P流量识别方法[J].计算机技术与发展,2014,24(07):21.
 HOU Shan-jiang[],ZHANG Dai-yuan[][][]. P2P Traffic Identification Based on Spline Weight Function Neural Network[J].,2014,24(11):21.
[5]李璨,耿国华,李康,等. 一种基于三维模型的文物碎片线图生成方法[J].计算机技术与发展,2014,24(07):25.
 LI Can,GENG Guo-hua,LI Kang,et al. A Method of Obtaining Cultural Debris’ s Line Chart Based on Three-dimensional Model[J].,2014,24(11):25.
[6]翁鹤,皮德常. 混沌RBF神经网络异常检测算法[J].计算机技术与发展,2014,24(07):29.
 WENG He,PI De-chang. Chaotic RBF Neural Network Anomaly Detection Algorithm[J].,2014,24(11):29.
[7]刘茜[],荆晓远[],李文倩[],等. 基于流形学习的正交稀疏保留投影[J].计算机技术与发展,2014,24(07):34.
 LIU Qian[],JING Xiao-yuan[,LI Wen-qian[],et al. Orthogonal Sparsity Preserving Projections Based on Manifold Learning[J].,2014,24(11):34.
[8]尚福华,李想,巩淼. 基于模糊框架-产生式知识表示及推理研究[J].计算机技术与发展,2014,24(07):38.
 SHANG Fu-hua,LI Xiang,GONG Miao. Research on Knowledge Representation and Inference Based on Fuzzy Framework-production[J].,2014,24(11):38.
[9]叶偲,李良福,肖樟树. 一种去除运动目标重影的图像镶嵌方法研究[J].计算机技术与发展,2014,24(07):43.
 YE Si,LI Liang-fu,XIAO Zhang-shu. Research of an Image Mosaic Method for Removing Ghost of Moving Targets[J].,2014,24(11):43.
[10]余松平[][],蔡志平[],吴建进[],等. GSM-R信令监测选择录音系统设计与实现[J].计算机技术与发展,2014,24(07):47.
 YU Song-ping[][],CAI Zhi-ping[] WU Jian-jin[],GU Feng-zhi[]. Design and Implementation of an Optional Voice Recording System Based on GSM-R Signaling Monitoring[J].,2014,24(11):47.

更新日期/Last Update: 2015-04-13