[1]廖兴宇,汪伦杰. 无线传感器网络DV-Hop定位算法的改进方法研究[J].计算机技术与发展,2014,24(11):127-130.
 LIAO Xing-yu,WANG Lun-jie. Research on Optimization Method of DV-Hop Localization Algorithm in Wireless Sensor Networks[J].,2014,24(11):127-130.
点击复制

 无线传感器网络DV-Hop定位算法的改进方法研究()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
24
期数:
2014年11期
页码:
127-130
栏目:
智能、算法、系统工程
出版日期:
2014-11-10

文章信息/Info

Title:
 Research on Optimization Method of DV-Hop Localization Algorithm in Wireless Sensor Networks
文章编号:
1673-629X(2014)11-0127-04
作者:
 廖兴宇汪伦杰
 江西师范大学 计算机信息工程学院
Author(s):
 LIAO Xing-yuWANG Lun-jie
关键词:
 DV-Hop定位算法RSSI加权修正最小二乘法
Keywords:
 DV-Hop localization algorithmRSSI weighted amendmentleast square method
分类号:
TP393
文献标志码:
A
摘要:
 为了提高传统DV-Hop算法的定位精度,推动该算法的进一步发展,文中从平均跳距计算和未知节点坐标计算两个阶段入手对传统DV-Hop算法进行改进,提出了一种基于RSSI加权修正的平均跳距计算方法和一种基于最小二乘法修正的未知节点坐标计算方法。为了验证算法改进的有效性,在Matlab中进行了仿真实验。实验结果表明:文中算法相对于传统DV-Hop算法测距精度提高了约20%;定位精度较传统DV-Hop算法提高了约30%。理论和实践均表明:在同等条件下文中的改进算法与传统DV-Hop算法相比具有更高的定位精度。
Abstract:
 In order to improve the positioning accuracy of the traditional DV-Hop algorithm,promoting the further development of the al-gorithm,the traditional DV-Hop algorithm is improved in two phase of computing average jump-distance and unknown nodes coordinate in this paper,put forward a computing average jump-distance method based on RSSI weighted correction and unknown nodes coordinate computing method based on correction method of least squares. In order to validate the improved method is effective,carry out the simula-tion experiment in Matlab software. The experimental results show that this algorithm is about 20% higher than the traditional DV-Hop algorithm in ranging accuracy,30% higher than the traditional DV-Hop algorithm in positioning accuracy. Theory and practice have proved that in same conditions,the improved algorithm has higher accuracy compared with the traditional DV-Hop algorithm.

相似文献/References:

[1]张志宏,吴庆波,邵立松,等.基于飞腾平台TOE协议栈的设计与实现[J].计算机技术与发展,2014,24(07):1.
 ZHANG Zhi-hong,WU Qing-bo,SHAO Li-song,et al. Design and Implementation of TCP/IP Offload Engine Protocol Stack Based on FT Platform[J].,2014,24(11):1.
[2]梁文快,李毅. 改进的基因表达算法对航班优化排序问题研究[J].计算机技术与发展,2014,24(07):5.
 LIANG Wen-kuai,LI Yi. Research on Optimization of Flight Scheduling Problem Based on Improved Gene Expression Algorithm[J].,2014,24(11):5.
[3]黄静,王枫,谢志新,等. EAST文档管理系统的设计与实现[J].计算机技术与发展,2014,24(07):13.
 HUANG Jing,WANG Feng,XIE Zhi-xin,et al. Design and Implementation of EAST Document Management System[J].,2014,24(11):13.
[4]侯善江[],张代远[][][]. 基于样条权函数神经网络P2P流量识别方法[J].计算机技术与发展,2014,24(07):21.
 HOU Shan-jiang[],ZHANG Dai-yuan[][][]. P2P Traffic Identification Based on Spline Weight Function Neural Network[J].,2014,24(11):21.
[5]李璨,耿国华,李康,等. 一种基于三维模型的文物碎片线图生成方法[J].计算机技术与发展,2014,24(07):25.
 LI Can,GENG Guo-hua,LI Kang,et al. A Method of Obtaining Cultural Debris’ s Line Chart Based on Three-dimensional Model[J].,2014,24(11):25.
[6]翁鹤,皮德常. 混沌RBF神经网络异常检测算法[J].计算机技术与发展,2014,24(07):29.
 WENG He,PI De-chang. Chaotic RBF Neural Network Anomaly Detection Algorithm[J].,2014,24(11):29.
[7]刘茜[],荆晓远[],李文倩[],等. 基于流形学习的正交稀疏保留投影[J].计算机技术与发展,2014,24(07):34.
 LIU Qian[],JING Xiao-yuan[,LI Wen-qian[],et al. Orthogonal Sparsity Preserving Projections Based on Manifold Learning[J].,2014,24(11):34.
[8]尚福华,李想,巩淼. 基于模糊框架-产生式知识表示及推理研究[J].计算机技术与发展,2014,24(07):38.
 SHANG Fu-hua,LI Xiang,GONG Miao. Research on Knowledge Representation and Inference Based on Fuzzy Framework-production[J].,2014,24(11):38.
[9]叶偲,李良福,肖樟树. 一种去除运动目标重影的图像镶嵌方法研究[J].计算机技术与发展,2014,24(07):43.
 YE Si,LI Liang-fu,XIAO Zhang-shu. Research of an Image Mosaic Method for Removing Ghost of Moving Targets[J].,2014,24(11):43.
[10]余松平[][],蔡志平[],吴建进[],等. GSM-R信令监测选择录音系统设计与实现[J].计算机技术与发展,2014,24(07):47.
 YU Song-ping[][],CAI Zhi-ping[] WU Jian-jin[],GU Feng-zhi[]. Design and Implementation of an Optional Voice Recording System Based on GSM-R Signaling Monitoring[J].,2014,24(11):47.

更新日期/Last Update: 2015-04-13