[1]范晓晔,田丰林,陈戈. 基于GPU的实时群体仿真算法实现[J].计算机技术与发展,2014,24(11):17-22.
 FAN Xiao-ye,TIAN Feng-lin,CHEN Ge. Implementation of Real-time Crowds Simulation Algorithm Based on GPU[J].,2014,24(11):17-22.
点击复制

 基于GPU的实时群体仿真算法实现()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
24
期数:
2014年11期
页码:
17-22
栏目:
智能、算法、系统工程
出版日期:
2014-11-10

文章信息/Info

Title:
 Implementation of Real-time Crowds Simulation Algorithm Based on GPU
文章编号:
1673-629X(2014)11-0017-06
作者:
 范晓晔田丰林陈戈
 中国海洋大学 信息科学与工程学院
Author(s):
 FAN Xiao-ye TIAN Feng-linCHEN Ge
关键词:
 群体仿真BOIDS算法Ping-Pong技术实时模拟GPU
Keywords:
 crowds simulationBOIDS algorithmPing-Pong technologyreal-time simulationGPU
分类号:
TP391.9
文献标志码:
A
摘要:
 群体仿真在虚拟现实、影视动画、计算机游戏等领域有着广泛的应用。大规模的群体仿真中每个个体都要同其感知范围内的其他个体相互作用,当实时更新所有个体的状态时,就会导致O( N2)计算量的问题。针对这一问题,实现了一种基于GPU(图形处理器)的BOIDS群体行为模拟算法,充分利用GPU并行计算的能力处理大规模群体运动的巨大计算量。该方法利用GPU的快速光栅化计算每个个体同其感知范围内的其他个体的相互作用力,通过像素颜色混合功能实现作用力的累加,利用GPU自动生成MipMap的能力计算所有个体的平均速度和平均位置。实验结果表明,该方法能够有效提高大规模群体运动的渲染速度。
Abstract:
 Crowds simulation has a wide range of applications in the fields such as virtual reality,film animation,computer game and so on. In the simulation of massive crowds,each individual must interact with other individuals within the range of its perception. The upda-ting of all individuals’ velocities and positions result in a O( N2 ) computation. Present a GPU based implementation of BOIDS flock al-gorithm to solve the problem mentioned before. The implementation takes full advantage of parallel computing of GPU to overcome the huge computational cost in massive crowds’ animation. The approach mentioned in this paper makes full use of the fast rasterization capa-bility of GPU to compute the force between each individual and its neighbor,the pixel color blending capability to accumulate the force, generating the MipMap capability to get the average velocity and average position of all individuals. Experimental results indicate that this method can improve the speed and efficiency of rendering in the simulation of large-scale crowds.

相似文献/References:

[1]张志宏,吴庆波,邵立松,等.基于飞腾平台TOE协议栈的设计与实现[J].计算机技术与发展,2014,24(07):1.
 ZHANG Zhi-hong,WU Qing-bo,SHAO Li-song,et al. Design and Implementation of TCP/IP Offload Engine Protocol Stack Based on FT Platform[J].,2014,24(11):1.
[2]梁文快,李毅. 改进的基因表达算法对航班优化排序问题研究[J].计算机技术与发展,2014,24(07):5.
 LIANG Wen-kuai,LI Yi. Research on Optimization of Flight Scheduling Problem Based on Improved Gene Expression Algorithm[J].,2014,24(11):5.
[3]黄静,王枫,谢志新,等. EAST文档管理系统的设计与实现[J].计算机技术与发展,2014,24(07):13.
 HUANG Jing,WANG Feng,XIE Zhi-xin,et al. Design and Implementation of EAST Document Management System[J].,2014,24(11):13.
[4]侯善江[],张代远[][][]. 基于样条权函数神经网络P2P流量识别方法[J].计算机技术与发展,2014,24(07):21.
 HOU Shan-jiang[],ZHANG Dai-yuan[][][]. P2P Traffic Identification Based on Spline Weight Function Neural Network[J].,2014,24(11):21.
[5]李璨,耿国华,李康,等. 一种基于三维模型的文物碎片线图生成方法[J].计算机技术与发展,2014,24(07):25.
 LI Can,GENG Guo-hua,LI Kang,et al. A Method of Obtaining Cultural Debris’ s Line Chart Based on Three-dimensional Model[J].,2014,24(11):25.
[6]翁鹤,皮德常. 混沌RBF神经网络异常检测算法[J].计算机技术与发展,2014,24(07):29.
 WENG He,PI De-chang. Chaotic RBF Neural Network Anomaly Detection Algorithm[J].,2014,24(11):29.
[7]刘茜[],荆晓远[],李文倩[],等. 基于流形学习的正交稀疏保留投影[J].计算机技术与发展,2014,24(07):34.
 LIU Qian[],JING Xiao-yuan[,LI Wen-qian[],et al. Orthogonal Sparsity Preserving Projections Based on Manifold Learning[J].,2014,24(11):34.
[8]尚福华,李想,巩淼. 基于模糊框架-产生式知识表示及推理研究[J].计算机技术与发展,2014,24(07):38.
 SHANG Fu-hua,LI Xiang,GONG Miao. Research on Knowledge Representation and Inference Based on Fuzzy Framework-production[J].,2014,24(11):38.
[9]叶偲,李良福,肖樟树. 一种去除运动目标重影的图像镶嵌方法研究[J].计算机技术与发展,2014,24(07):43.
 YE Si,LI Liang-fu,XIAO Zhang-shu. Research of an Image Mosaic Method for Removing Ghost of Moving Targets[J].,2014,24(11):43.
[10]余松平[][],蔡志平[],吴建进[],等. GSM-R信令监测选择录音系统设计与实现[J].计算机技术与发展,2014,24(07):47.
 YU Song-ping[][],CAI Zhi-ping[] WU Jian-jin[],GU Feng-zhi[]. Design and Implementation of an Optional Voice Recording System Based on GSM-R Signaling Monitoring[J].,2014,24(11):47.

更新日期/Last Update: 2015-04-03