[1]胡天天,戴航,黄东旭. 基于CN-M的邮件网络核心社团挖掘[J].计算机技术与发展,2014,24(11):9-12.
 HU Tian-tian,DAI Hang,HUANG Dong-xu. Mining Core Community from Mail Network Based on CN-M[J].,2014,24(11):9-12.
点击复制

 基于CN-M的邮件网络核心社团挖掘()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
24
期数:
2014年11期
页码:
9-12
栏目:
智能、算法、系统工程
出版日期:
2014-11-10

文章信息/Info

Title:
 Mining Core Community from Mail Network Based on CN-M
文章编号:
1673-629X(2014)11-0009-04
作者:
 胡天天戴航黄东旭
 西北工业大学 自动化学院
Author(s):
 HU Tian-tianDAI HangHUANG Dong-xu
关键词:
 社会网络分析邮件网络核心社团加权中心度模块度
Keywords:
 social network analysismail networkcore communityweighted centralitymodularity degree
分类号:
TP301.6
文献标志码:
A
摘要:
 在当今互联网时代,电子邮件的快速、低耗等特性,使其成为人们生活和工作中的必需工具。为了智能化地提取和分析邮件网络中的海量数据,以从海量邮件数据中挖掘潜在的有价值的信息,将社会网络分析方法应用于邮件网络分析,提出了基于CN-M( Core Node-Modularity)的邮件网络核心社团挖掘算法。首先用JavaMail对数据进行解析,将解析后的数据保存在数据库中,使用这些数据来构建邮件网络图,根据节点的连接中心度、紧密中心度和中间中心度计算加权中心度,由加权中心度最大的节点开始,根据模块度指标进行核心社团的挖掘。实验结果表明该算法可以很好地挖掘邮件网络中潜在的核心社团。
Abstract:
 With the rapid development of the network,e-mail with its fast,low cost and other characteristics,is becoming the necessary tools in people’s work and life. In order to extract and analyze the massive data from mail network intelligently,and to grub the potential of valuable information from massive mail data,apply social network analysis method to the mail network analysis,and propose email net-work core community mining algorithm based on CN-M ( Core Node-Modularity) . First,use JavaMail to parse mail data,and store the analyzed data in the database. Second,use these data to construct the mail network diagram,according to connection center degree,close center degree and intermediate degree centrality to calculate weighted centrality. Starting from the center of the largest weighted node, based on modularity index,mine the core community. Experimental results show that the algorithm can mine the potential core community from mail network well.

相似文献/References:

[1]倪奕 余淮 陈侃 朱培栋.基于维基百科的社会网络分析研究[J].计算机技术与发展,2011,(12):1.
 NI Yi,YU Huai,CHEN Kan,et al.Research of Social Network Analysis Technology Based on Wikipedia[J].,2011,(11):1.
[2]俞淮 郑倩冰 毛羽刚 朱培栋.基于局部中心度的在线论坛意见领袖发现算法[J].计算机技术与发展,2012,(04):9.
 YU Huai,ZHENG Qian-bing,MAO Yu-gang,et al.An Algorithm for Online Forum Opinion Leaders Discovery Based on Local Centrality[J].,2012,(11):9.
[3]张志宏,吴庆波,邵立松,等.基于飞腾平台TOE协议栈的设计与实现[J].计算机技术与发展,2014,24(07):1.
 ZHANG Zhi-hong,WU Qing-bo,SHAO Li-song,et al. Design and Implementation of TCP/IP Offload Engine Protocol Stack Based on FT Platform[J].,2014,24(11):1.
[4]梁文快,李毅. 改进的基因表达算法对航班优化排序问题研究[J].计算机技术与发展,2014,24(07):5.
 LIANG Wen-kuai,LI Yi. Research on Optimization of Flight Scheduling Problem Based on Improved Gene Expression Algorithm[J].,2014,24(11):5.
[5]黄静,王枫,谢志新,等. EAST文档管理系统的设计与实现[J].计算机技术与发展,2014,24(07):13.
 HUANG Jing,WANG Feng,XIE Zhi-xin,et al. Design and Implementation of EAST Document Management System[J].,2014,24(11):13.
[6]侯善江[],张代远[][][]. 基于样条权函数神经网络P2P流量识别方法[J].计算机技术与发展,2014,24(07):21.
 HOU Shan-jiang[],ZHANG Dai-yuan[][][]. P2P Traffic Identification Based on Spline Weight Function Neural Network[J].,2014,24(11):21.
[7]李璨,耿国华,李康,等. 一种基于三维模型的文物碎片线图生成方法[J].计算机技术与发展,2014,24(07):25.
 LI Can,GENG Guo-hua,LI Kang,et al. A Method of Obtaining Cultural Debris’ s Line Chart Based on Three-dimensional Model[J].,2014,24(11):25.
[8]翁鹤,皮德常. 混沌RBF神经网络异常检测算法[J].计算机技术与发展,2014,24(07):29.
 WENG He,PI De-chang. Chaotic RBF Neural Network Anomaly Detection Algorithm[J].,2014,24(11):29.
[9]刘茜[],荆晓远[],李文倩[],等. 基于流形学习的正交稀疏保留投影[J].计算机技术与发展,2014,24(07):34.
 LIU Qian[],JING Xiao-yuan[,LI Wen-qian[],et al. Orthogonal Sparsity Preserving Projections Based on Manifold Learning[J].,2014,24(11):34.
[10]尚福华,李想,巩淼. 基于模糊框架-产生式知识表示及推理研究[J].计算机技术与发展,2014,24(07):38.
 SHANG Fu-hua,LI Xiang,GONG Miao. Research on Knowledge Representation and Inference Based on Fuzzy Framework-production[J].,2014,24(11):38.
[11]朱乔亚,陈可佳,方彪. 采用位置信息的半监督链接预测方法[J].计算机技术与发展,2015,25(07):63.
 ZHU Qiao-ya,CHEN Ke-jia,FANG Biao. A Semi-supervised Link Prediction Method Using Place Features[J].,2015,25(11):63.

更新日期/Last Update: 2015-04-03