[1]林伟民,周宁宁. 线性递减的粒子群优化算法[J].计算机技术与发展,2014,24(10):67-70.
 LIN Wei-min,ZHOU Ning-ning. A Particle Swarm Optimization Algorithm of Linear Decreasing[J].,2014,24(10):67-70.
点击复制

 线性递减的粒子群优化算法()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
24
期数:
2014年10期
页码:
67-70
栏目:
智能、算法、系统工程
出版日期:
2014-10-10

文章信息/Info

Title:
 A Particle Swarm Optimization Algorithm of Linear Decreasing
文章编号:
1673-629X(2014)10-0067-04
作者:
 林伟民周宁宁
 南京邮电大学 计算机与软件学院
Author(s):
 LIN Wei-minZHOU Ning-ning
关键词:
 粒子群优化振荡现象
Keywords:
 particle swarmoptimizationoscillation phenomenon
分类号:
TP301.6
文献标志码:
A
摘要:
 粒子群优化算法( PSO)是一种仿生类的全局优化算法,它借助记忆与反馈机制完成了寻优搜索。该算法受到了鸟类觅食活动的启发而得,其基本思想源于对鸟类简化社会模型的研究及行为模拟,其中的每个个体充分利用自身与群体的智能,不断地调整学习,最终得到满意解。该算法常用于求解非线性问题、组合优化问题等。因其具有易理解,易实现,控制参数少,收敛速度快等优点,该算法一经提出就吸引了广泛的关注,逐渐成为一个新的研究热点。然而粒子群优化算法也有些不足,如搜索精度不高,易早熟以及易陷入局部极值等。而且算法在搜索后期也有产生振荡现象的可能,使得算法收敛起来会较慢。所以,文中就粒子群在迭代后期所出现的振荡现象进行了研究,并作出改进,提出了一种飞行时间单调递减的粒子群优化算法。新算法改善了算法的寻优能力,减小了粒子在寻优过程中的振荡现象。
Abstract:
 Particle Swarm Optimization ( PSO) algorithm is a global optimization algorithm of bionics,with the help of memory and feed-back mechanism to complete the search for optimum. The algorithm is inspired by the foraging birds. The basic idea is the result of the study on birds simplified social model and behavior simulation,each of these individuals makes full use of their own and the collective in-telligence,constantly adjusts learning,finally gets satisfied solution. The algorithm is often used to solve nonlinear problem,combinatorial optimization problem and so on. Because of the advantages which is easy to understand and implement,with less control parameters and fast convergence speed,the algorithm is attracted widespread attention since proposing,gradually becoming a new research hotspot. How-ever,there exists a premature convergence,particle swarm optimization algorithm is easy to fall into local optimum and search accuracy of inherent defects,and the algorithm may appears oscillation phenomenon in the late iterations, algorithm ’ s convergence speed is slow. Therefore,based on particle swarm in the late iterations of iterative phenomenon is studied and improved,design a flight time linear de-creasing particle swarm optimization algorithm. The new algorithm improves the searching capability,reduces the particle in the oscillation phenomenon in the process of optimization.

相似文献/References:

[1]丁华福 姜晓伟 王丽雪[].基于禁忌搜索的自适应粒子群算法[J].计算机技术与发展,2010,(04):140.
 DING Hua-fu,JIANG Xiao-wei,WANG Li-xue[].Adaptive Particle Swarm Optimization Algorithm Based on Tabu Search[J].,2010,(10):140.
[2]曹晓燕 于立萍[] 姚文韬[].基于粒子群算法的模糊控制在倒立摆中的应用[J].计算机技术与发展,2008,(06):151.
 CAO Xiao-yan,YU Li-ping,YAO Wen-tao.Particle Swarm Optimization in Fuzzy Control of an Inverted Pendulum[J].,2008,(10):151.
[3]贾冀婷.基于粒子群算法的测试用例自动生成方法研究[J].计算机技术与发展,2010,(09):24.
 JIA Ji-ting.Research of Automatic Testcase Generation Functions Based on Particle Swarm Optimization Algorithm[J].,2010,(10):24.
[4]王京 于舒娟.模拟退火混沌粒子群算法的盲检测[J].计算机技术与发展,2011,(01):35.
 WANG Jing,YU Shu-juan.Blind Detection Based on Simulated Annealing Chaotic Particle Swarm Optimization[J].,2011,(10):35.
[5]李莎 陶红 高尚.基于属性约简与参数优化的SVM故障诊断研究[J].计算机技术与发展,2012,(04):175.
 LI Sha,TAO Hong,GAO Shang.SVM Fault Diagnosis Research Based on Attribute Reduction and Parameters Optimization[J].,2012,(10):175.
[6]刘洁,李目,周少武.一种混沌混合粒子群优化RBF神经网络算法[J].计算机技术与发展,2013,(08):181.
 LIU Jie[],LI Mu[],ZHOU Shao-wu[].An Algorithm of Chaotic Hybrid Particle Swarm Optimization Based on RBF Neural Network[J].,2013,(10):181.
[7]张志宏,吴庆波,邵立松,等.基于飞腾平台TOE协议栈的设计与实现[J].计算机技术与发展,2014,24(07):1.
 ZHANG Zhi-hong,WU Qing-bo,SHAO Li-song,et al. Design and Implementation of TCP/IP Offload Engine Protocol Stack Based on FT Platform[J].,2014,24(10):1.
[8]梁文快,李毅. 改进的基因表达算法对航班优化排序问题研究[J].计算机技术与发展,2014,24(07):5.
 LIANG Wen-kuai,LI Yi. Research on Optimization of Flight Scheduling Problem Based on Improved Gene Expression Algorithm[J].,2014,24(10):5.
[9]黄静,王枫,谢志新,等. EAST文档管理系统的设计与实现[J].计算机技术与发展,2014,24(07):13.
 HUANG Jing,WANG Feng,XIE Zhi-xin,et al. Design and Implementation of EAST Document Management System[J].,2014,24(10):13.
[10]侯善江[],张代远[][][]. 基于样条权函数神经网络P2P流量识别方法[J].计算机技术与发展,2014,24(07):21.
 HOU Shan-jiang[],ZHANG Dai-yuan[][][]. P2P Traffic Identification Based on Spline Weight Function Neural Network[J].,2014,24(10):21.
[11]朱俚治. 一种基于文件型病毒的粒子群检测方法[J].计算机技术与发展,2014,24(12):128.
 ZHU Li-zhi. A Detection Method for Particle Swarm Based on File Type Virus[J].,2014,24(10):128.
[12]朱俚治. 一种基于误用检测的新算法[J].计算机技术与发展,2015,25(02):135.
 ZHU Li-zhi. A New Algorithm Based on Misuse Detection[J].,2015,25(10):135.
[13]杨庆,陈强,李珍珍. 带时间窗车辆路径问题的混沌粒子群优化算法[J].计算机技术与发展,2015,25(08):119.
 YANG Qing,CHEN Qiang,LI Zhen-zhen. A Chaos Particle Swarm Optimization Algorithm of Vehicle Routing Problem with Time Windows[J].,2015,25(10):119.
[14]朱亚东[],高翠芳[]. 基于PSO的云计算环境中大数据优化聚类算法[J].计算机技术与发展,2016,26(09):178.
 ZHU Ya-dong[],GAO Cui-fang[]. Big Data Optimization Clustering Algorithm Based on PSO in Cloud Computing Environment[J].,2016,26(10):178.

更新日期/Last Update: 2015-04-02