[1]潘明慧,牛耘. 基于多线索混合词典的微博情绪识别[J].计算机技术与发展,2014,24(09):28-32.
 PAN Ming-hui,NIU Yun. Emotion Recognition of Micro-blogs Based on a Hybrid Lexicon[J].,2014,24(09):28-32.
点击复制

 基于多线索混合词典的微博情绪识别()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
24
期数:
2014年09期
页码:
28-32
栏目:
智能、算法、系统工程
出版日期:
2014-09-10

文章信息/Info

Title:
 Emotion Recognition of Micro-blogs Based on a Hybrid Lexicon
文章编号:
1673-629X(2014)09-0028-05
作者:
 潘明慧牛耘
 南京航空航天大学 计算机科学与技术学院
Author(s):
 PAN Ming-huiNIU Yun
关键词:
 微博情绪分析情绪词典表情符
Keywords:
 micro-blogemotion analysisemotion lexiconemoticons
分类号:
TP391.1
文献标志码:
A
摘要:
 微博等社交媒体为人们情绪表达提供了重要平台,分析微博的情绪倾向具有重要的商业价值和社会意义。文中提出了基于词典的规则方法识别微博所表达的喜、哀、怒、惧、恶、惊六种情绪。针对情绪表达的重要线索表情符利用互信息法生成了表情符词典,与传统情绪词典相结合,制定了针对否定用法的规则对微博进行分析。建立了第一个包含六种情绪的人工标注微博数据集。实验表明,传统的情绪词典虽然收录了大量词汇,但对于社交媒体文本分析的准确率和覆盖率都不高。表情符词典的应用显著地提高了微博情绪分析的精度和覆盖率。
Abstract:
 The proliferation of micro-blogs has created a popular digital platform where people are able to express emotions and share feelings. Analysis of emotions in micro-blogs would be potentially beneficial to companies and the society. In this paper,a lexicon-based approach is proposed to identify six emotions in micro-blog text,including joy,sadness,anger,fear,disgust and surprise. A lexicon of emoticons is built based on the mutual information method between emoticons and emotions. Combined with a traditional emotion lexicon in this approach,negation rules are made to process negations in emotion expression to analyze mirco-blog. The first corpus of Chinese micro-blogs manually annotated with the six emotions is built as the test set. The experimental results show that the traditional lexicon has a moderate accuracy and coverage in analysis of micro-blog text. The combination of the two lexicons greatly improves the accuracy and coverage.

相似文献/References:

[1]舒琰,向阳,张骐,等.基于PageRank的微博排名MapReduce算法研究[J].计算机技术与发展,2013,(02):73.
 SHU Yan,XIANG Yang,ZHANG Qi,et al.Research on MapReduce Algorithm of Micro Blog Ranking Based on PageRank[J].,2013,(09):73.
[2]张志宏,吴庆波,邵立松,等.基于飞腾平台TOE协议栈的设计与实现[J].计算机技术与发展,2014,24(07):1.
 ZHANG Zhi-hong,WU Qing-bo,SHAO Li-song,et al. Design and Implementation of TCP/IP Offload Engine Protocol Stack Based on FT Platform[J].,2014,24(09):1.
[3]梁文快,李毅. 改进的基因表达算法对航班优化排序问题研究[J].计算机技术与发展,2014,24(07):5.
 LIANG Wen-kuai,LI Yi. Research on Optimization of Flight Scheduling Problem Based on Improved Gene Expression Algorithm[J].,2014,24(09):5.
[4]黄静,王枫,谢志新,等. EAST文档管理系统的设计与实现[J].计算机技术与发展,2014,24(07):13.
 HUANG Jing,WANG Feng,XIE Zhi-xin,et al. Design and Implementation of EAST Document Management System[J].,2014,24(09):13.
[5]侯善江[],张代远[][][]. 基于样条权函数神经网络P2P流量识别方法[J].计算机技术与发展,2014,24(07):21.
 HOU Shan-jiang[],ZHANG Dai-yuan[][][]. P2P Traffic Identification Based on Spline Weight Function Neural Network[J].,2014,24(09):21.
[6]李璨,耿国华,李康,等. 一种基于三维模型的文物碎片线图生成方法[J].计算机技术与发展,2014,24(07):25.
 LI Can,GENG Guo-hua,LI Kang,et al. A Method of Obtaining Cultural Debris’ s Line Chart Based on Three-dimensional Model[J].,2014,24(09):25.
[7]翁鹤,皮德常. 混沌RBF神经网络异常检测算法[J].计算机技术与发展,2014,24(07):29.
 WENG He,PI De-chang. Chaotic RBF Neural Network Anomaly Detection Algorithm[J].,2014,24(09):29.
[8]刘茜[],荆晓远[],李文倩[],等. 基于流形学习的正交稀疏保留投影[J].计算机技术与发展,2014,24(07):34.
 LIU Qian[],JING Xiao-yuan[,LI Wen-qian[],et al. Orthogonal Sparsity Preserving Projections Based on Manifold Learning[J].,2014,24(09):34.
[9]尚福华,李想,巩淼. 基于模糊框架-产生式知识表示及推理研究[J].计算机技术与发展,2014,24(07):38.
 SHANG Fu-hua,LI Xiang,GONG Miao. Research on Knowledge Representation and Inference Based on Fuzzy Framework-production[J].,2014,24(09):38.
[10]叶偲,李良福,肖樟树. 一种去除运动目标重影的图像镶嵌方法研究[J].计算机技术与发展,2014,24(07):43.
 YE Si,LI Liang-fu,XIAO Zhang-shu. Research of an Image Mosaic Method for Removing Ghost of Moving Targets[J].,2014,24(09):43.
[11]苏小英[][],孟环建[]. 基于神经网络的微博情感分析[J].计算机技术与发展,2015,25(12):161.
 SU Xiao-ying[][],MENG Huan-jian[]. Sentiment Analysis of Micro-blog Based on Neural Networks[J].,2015,25(09):161.
[12]房旋[],陈升波[],宫婧[][],等. 基于社交影响力的推荐算法[J].计算机技术与发展,2016,26(06):31.
 FANG Xuan[],CHEN Sheng-bo[],GONG Jing[][],et al. A Recommendation Algorithm Based on Social Influence[J].,2016,26(09):31.
[13]陈阳[],邵曦[],赵海博[]. 基于UR-LDA的微博主题挖掘[J].计算机技术与发展,2017,27(06):173.
 CHEN Yang[],SHAO Xi[],ZHAO Hai-bo[]. Microblog Topic Mining Based on UR-LDA[J].,2017,27(09):173.

更新日期/Last Update: 2015-04-01