[1]张璋,张然,朱东生. 关系数据库中社区发现方法研究[J].计算机技术与发展,2014,24(08):108-111.
 ZHANG Zhang,ZHANG Ran,ZHU Dong-sheng. Research on Community Discovery Methods in Relational Database[J].,2014,24(08):108-111.
点击复制

 关系数据库中社区发现方法研究()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
24
期数:
2014年08期
页码:
108-111
栏目:
智能、算法、系统工程
出版日期:
2014-08-10

文章信息/Info

Title:
 Research on Community Discovery Methods in Relational Database
文章编号:
1673-629X(2014)08-0108-04
作者:
 张璋张然朱东生
 长沙理工大学 计算机与通信工程学院
Author(s):
 ZHANG ZhangZHANG RanZHU Dong-sheng
关键词:
 社区发现加权网络分布式数据库
Keywords:
 community discoveryweighted networksdistributed database
分类号:
TP301
文献标志码:
A
摘要:
 文中在研究了现有社区发现算法的基础上,提出了一种简单的加权网络中社区发现方法。文中基于社区结构最为普遍的性质,受社会网络中真实社区结构和并行计算的任务划分规则的启发,提出了基于核心边的加权网络中社区发现方法。该方法首先依据网络中边的权值寻找核心边;然后依据相似性度量,发现网络中的一个初始社区;最后通过隶属度度量,将发现的初始社区逐步扩展成网络中的社区结构。该方法在进行社区结构发现的过程中,仅仅依赖节点所处位置的局部信息,可以在对网络进行广度优先遍历的过程中完成社区发现工作。因此该方法具有较低的计算复杂度,可以适用于大规模网络中的社区发现。通过有效性实验和效率实验,表明该方法可以有效发现大规模网络中的社区结构。
Abstract:
 A simple weighted community discovery algorithm is proposed based on study of existing community discovery methods. Based on the most commonly nature of community structures,inspired by task division rules of the real community structure and parallel compu-ting in social networks,propose the weighted network community discovery methods based on core edge. In this method,based on the weight of edges in the network,look for the core edge;then in accordance with similarity measure,find an initial community in the net-work;finally through membership metrics,you will find the initial community gradually expands into community structures in a network. This method during the discovery process of community structures,relies solely on the local node location information,the network can be a breadth-first traversal of the community discovery process to complete the work. Therefore,the method has a low computational com-plexity,which can be applied in a large-scale network community discovery. Through experimental test on effectiveness and efficiency, the method can effectively detect large-scale network of community structures.

相似文献/References:

[1]张志宏,吴庆波,邵立松,等.基于飞腾平台TOE协议栈的设计与实现[J].计算机技术与发展,2014,24(07):1.
 ZHANG Zhi-hong,WU Qing-bo,SHAO Li-song,et al. Design and Implementation of TCP/IP Offload Engine Protocol Stack Based on FT Platform[J].,2014,24(08):1.
[2]梁文快,李毅. 改进的基因表达算法对航班优化排序问题研究[J].计算机技术与发展,2014,24(07):5.
 LIANG Wen-kuai,LI Yi. Research on Optimization of Flight Scheduling Problem Based on Improved Gene Expression Algorithm[J].,2014,24(08):5.
[3]黄静,王枫,谢志新,等. EAST文档管理系统的设计与实现[J].计算机技术与发展,2014,24(07):13.
 HUANG Jing,WANG Feng,XIE Zhi-xin,et al. Design and Implementation of EAST Document Management System[J].,2014,24(08):13.
[4]侯善江[],张代远[][][]. 基于样条权函数神经网络P2P流量识别方法[J].计算机技术与发展,2014,24(07):21.
 HOU Shan-jiang[],ZHANG Dai-yuan[][][]. P2P Traffic Identification Based on Spline Weight Function Neural Network[J].,2014,24(08):21.
[5]李璨,耿国华,李康,等. 一种基于三维模型的文物碎片线图生成方法[J].计算机技术与发展,2014,24(07):25.
 LI Can,GENG Guo-hua,LI Kang,et al. A Method of Obtaining Cultural Debris’ s Line Chart Based on Three-dimensional Model[J].,2014,24(08):25.
[6]翁鹤,皮德常. 混沌RBF神经网络异常检测算法[J].计算机技术与发展,2014,24(07):29.
 WENG He,PI De-chang. Chaotic RBF Neural Network Anomaly Detection Algorithm[J].,2014,24(08):29.
[7]刘茜[],荆晓远[],李文倩[],等. 基于流形学习的正交稀疏保留投影[J].计算机技术与发展,2014,24(07):34.
 LIU Qian[],JING Xiao-yuan[,LI Wen-qian[],et al. Orthogonal Sparsity Preserving Projections Based on Manifold Learning[J].,2014,24(08):34.
[8]尚福华,李想,巩淼. 基于模糊框架-产生式知识表示及推理研究[J].计算机技术与发展,2014,24(07):38.
 SHANG Fu-hua,LI Xiang,GONG Miao. Research on Knowledge Representation and Inference Based on Fuzzy Framework-production[J].,2014,24(08):38.
[9]叶偲,李良福,肖樟树. 一种去除运动目标重影的图像镶嵌方法研究[J].计算机技术与发展,2014,24(07):43.
 YE Si,LI Liang-fu,XIAO Zhang-shu. Research of an Image Mosaic Method for Removing Ghost of Moving Targets[J].,2014,24(08):43.
[10]余松平[][],蔡志平[],吴建进[],等. GSM-R信令监测选择录音系统设计与实现[J].计算机技术与发展,2014,24(07):47.
 YU Song-ping[][],CAI Zhi-ping[] WU Jian-jin[],GU Feng-zhi[]. Design and Implementation of an Optional Voice Recording System Based on GSM-R Signaling Monitoring[J].,2014,24(08):47.
[11]顾炎,熊超. 动态社区的点增量发现算法[J].计算机技术与发展,2017,27(06):81.
 GU Yan,XIONG Chao. Vertex-based Incremental Algorithm for DynamicCommunities Detecting[J].,2017,27(08):81.

更新日期/Last Update: 2015-03-26