[1]张志强. 一种基于正交视图的三维模型多特征匹配算法[J].计算机技术与发展,2014,24(08):94-98.
 ZHANG Zhi-qiang. A 3 D Model Multi-feature Matching Algorithm Based on Orthogonal Views[J].,2014,24(08):94-98.
点击复制

 一种基于正交视图的三维模型多特征匹配算法()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
24
期数:
2014年08期
页码:
94-98
栏目:
智能、算法、系统工程
出版日期:
2014-08-10

文章信息/Info

Title:
 A 3 D Model Multi-feature Matching Algorithm Based on Orthogonal Views
文章编号:
1673-629X(2014)08-0094-05
作者:
 张志强
 顺德职业技术学院
Author(s):
 ZHANG Zhi-qiang
关键词:
 正视图直方图Zernike矩融合
Keywords:
 front viewhistogramZernike momentcombination
分类号:
TP301.6
文献标志码:
A
摘要:
 针对现今多数三维检索算法在匹配精度、检索速度以及算法复杂度三者难以相互兼顾的问题,文中提出一种基于正交视图的三维模型多特征匹配算法。首先对被检索三维模型的6个正视角进行投影,获得6个正视图像;接着分别用灰度级图像来描述各个正视图特征,并根据投影后模型各面的分布情况填补顶点与面片之间的间隙;然后动态提取每个灰度级图像的投影直方图特征和Zernike矩特征;最后在分析各特征的优缺点的基础上,融合多个特征来匹配三维模型的相似度。与传统LFD算法和D2算法进行对比实验,结果表明,文中算法能较好地提高对三维模型检索的查全率与查准率,具有计算量小、匹配精度高、运行速度快的优点。
Abstract:
 Aiming at the problem of attending to matching precision,retrieval speed and algorithm complexity simultaneously in the most of current 3D retrieval algorithms,a 3D model multi-feature matching algorithm based on orthogonal views is proposed. First,the front views are obtained by projecting six positive angles of the retrieved model. Second,the gray image is used to illustrate every front view’ s features and the gaps between facets and edges after the projection are filled according to the distribution of the model’ s facets. Then the features of every gray image’ s projection histograms and Zernike moments are extracted dynamically. Finally,based on the analysis of ad-vantages and disadvantages of each feature,multiple features are combined to match the model’ s similarity. The experiment comparison is made with the LFD algorithm and D2 algorithm. The results show that the algorithm suggested can better improve the recall ratio and pre-cision ratio of the model’ s retrieval and it has the advantages of low computational complexity,high matching precision and rapid compu-ting speed.

相似文献/References:

[1]张志宏,吴庆波,邵立松,等.基于飞腾平台TOE协议栈的设计与实现[J].计算机技术与发展,2014,24(07):1.
 ZHANG Zhi-hong,WU Qing-bo,SHAO Li-song,et al. Design and Implementation of TCP/IP Offload Engine Protocol Stack Based on FT Platform[J].,2014,24(08):1.
[2]梁文快,李毅. 改进的基因表达算法对航班优化排序问题研究[J].计算机技术与发展,2014,24(07):5.
 LIANG Wen-kuai,LI Yi. Research on Optimization of Flight Scheduling Problem Based on Improved Gene Expression Algorithm[J].,2014,24(08):5.
[3]黄静,王枫,谢志新,等. EAST文档管理系统的设计与实现[J].计算机技术与发展,2014,24(07):13.
 HUANG Jing,WANG Feng,XIE Zhi-xin,et al. Design and Implementation of EAST Document Management System[J].,2014,24(08):13.
[4]侯善江[],张代远[][][]. 基于样条权函数神经网络P2P流量识别方法[J].计算机技术与发展,2014,24(07):21.
 HOU Shan-jiang[],ZHANG Dai-yuan[][][]. P2P Traffic Identification Based on Spline Weight Function Neural Network[J].,2014,24(08):21.
[5]李璨,耿国华,李康,等. 一种基于三维模型的文物碎片线图生成方法[J].计算机技术与发展,2014,24(07):25.
 LI Can,GENG Guo-hua,LI Kang,et al. A Method of Obtaining Cultural Debris’ s Line Chart Based on Three-dimensional Model[J].,2014,24(08):25.
[6]翁鹤,皮德常. 混沌RBF神经网络异常检测算法[J].计算机技术与发展,2014,24(07):29.
 WENG He,PI De-chang. Chaotic RBF Neural Network Anomaly Detection Algorithm[J].,2014,24(08):29.
[7]刘茜[],荆晓远[],李文倩[],等. 基于流形学习的正交稀疏保留投影[J].计算机技术与发展,2014,24(07):34.
 LIU Qian[],JING Xiao-yuan[,LI Wen-qian[],et al. Orthogonal Sparsity Preserving Projections Based on Manifold Learning[J].,2014,24(08):34.
[8]尚福华,李想,巩淼. 基于模糊框架-产生式知识表示及推理研究[J].计算机技术与发展,2014,24(07):38.
 SHANG Fu-hua,LI Xiang,GONG Miao. Research on Knowledge Representation and Inference Based on Fuzzy Framework-production[J].,2014,24(08):38.
[9]叶偲,李良福,肖樟树. 一种去除运动目标重影的图像镶嵌方法研究[J].计算机技术与发展,2014,24(07):43.
 YE Si,LI Liang-fu,XIAO Zhang-shu. Research of an Image Mosaic Method for Removing Ghost of Moving Targets[J].,2014,24(08):43.
[10]余松平[][],蔡志平[],吴建进[],等. GSM-R信令监测选择录音系统设计与实现[J].计算机技术与发展,2014,24(07):47.
 YU Song-ping[][],CAI Zhi-ping[] WU Jian-jin[],GU Feng-zhi[]. Design and Implementation of an Optional Voice Recording System Based on GSM-R Signaling Monitoring[J].,2014,24(08):47.

更新日期/Last Update: 2015-03-26