[1]李娜,雷秀娟. 细菌觅食优化算法的研究进展[J].计算机技术与发展,2014,24(08):39-44.
 LI Na,LEI Xiu-juan. Research on Bacterial Foraging Optimization Algorithm[J].,2014,24(08):39-44.
点击复制

 细菌觅食优化算法的研究进展()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
24
期数:
2014年08期
页码:
39-44
栏目:
智能、算法、系统工程
出版日期:
2014-08-10

文章信息/Info

Title:
 Research on Bacterial Foraging Optimization Algorithm
文章编号:
1673-629X(2014)08-0039-06
作者:
 李娜雷秀娟
 陕西师范大学 计算机科学学院
Author(s):
 LI NaLEI Xiu-juan
关键词:
 细菌觅食优化算法基本原理算法改进
Keywords:
 bacterial foraging optimization algorithmbasic principlealgorithm improvement
分类号:
TP301.6
文献标志码:
A
摘要:
 细菌觅食优化算法是近年来发展起来的,基于大肠杆菌觅食行为模型的一种新型智能算法。它具有对初值和参数选择不敏感、鲁棒性强、简单易于实现,以及并行处理和全局搜索等优点。但其在应用过程中存在精度不够高、收敛速度不够快的缺点。文中首先对细菌觅食优化算法的基本原理及操作流程进行介绍,并概述了国内外学者在这一领域的研究现状,接着分析了算法三大主要操作存在的问题,然后探讨了算法的改进和应用,最后分析了算法未来的研究方向。
Abstract:
 acterial Foraging Optimization Algorithm ( BFOA) is one of the new intelligent optimization methods that are based on the simulation of the foraging of Escherichia Coli. The advantage of BFO is the insensitivity of parameter choosing,robustness,parallel com-puting and easily global searching and so on. But during the superficial application the weakness of relatively low accuracy and rate of convergence is discovered. First introduce the basic principle and operation process for the BFOA,and overview the current researches of many domestic and international scholars about BFOA. Then analyze the three major problems existing in the operation algorithm. And then the improvement and application of BFOA are discussed. Finally,the future research direction of the algorithm is analyzed.

相似文献/References:

[1]杜明煜,雷秀娟.改进的细菌觅食优化算法求解0-1背包问题[J].计算机技术与发展,2014,24(05):44.
 DU Ming-yu,LEI Xiu-juan.Improved Bacteria Foraging Optimization Algorithm for 0-1 Knapsack Problem[J].,2014,24(08):44.
[2]张志宏,吴庆波,邵立松,等.基于飞腾平台TOE协议栈的设计与实现[J].计算机技术与发展,2014,24(07):1.
 ZHANG Zhi-hong,WU Qing-bo,SHAO Li-song,et al. Design and Implementation of TCP/IP Offload Engine Protocol Stack Based on FT Platform[J].,2014,24(08):1.
[3]梁文快,李毅. 改进的基因表达算法对航班优化排序问题研究[J].计算机技术与发展,2014,24(07):5.
 LIANG Wen-kuai,LI Yi. Research on Optimization of Flight Scheduling Problem Based on Improved Gene Expression Algorithm[J].,2014,24(08):5.
[4]黄静,王枫,谢志新,等. EAST文档管理系统的设计与实现[J].计算机技术与发展,2014,24(07):13.
 HUANG Jing,WANG Feng,XIE Zhi-xin,et al. Design and Implementation of EAST Document Management System[J].,2014,24(08):13.
[5]侯善江[],张代远[][][]. 基于样条权函数神经网络P2P流量识别方法[J].计算机技术与发展,2014,24(07):21.
 HOU Shan-jiang[],ZHANG Dai-yuan[][][]. P2P Traffic Identification Based on Spline Weight Function Neural Network[J].,2014,24(08):21.
[6]李璨,耿国华,李康,等. 一种基于三维模型的文物碎片线图生成方法[J].计算机技术与发展,2014,24(07):25.
 LI Can,GENG Guo-hua,LI Kang,et al. A Method of Obtaining Cultural Debris’ s Line Chart Based on Three-dimensional Model[J].,2014,24(08):25.
[7]翁鹤,皮德常. 混沌RBF神经网络异常检测算法[J].计算机技术与发展,2014,24(07):29.
 WENG He,PI De-chang. Chaotic RBF Neural Network Anomaly Detection Algorithm[J].,2014,24(08):29.
[8]刘茜[],荆晓远[],李文倩[],等. 基于流形学习的正交稀疏保留投影[J].计算机技术与发展,2014,24(07):34.
 LIU Qian[],JING Xiao-yuan[,LI Wen-qian[],et al. Orthogonal Sparsity Preserving Projections Based on Manifold Learning[J].,2014,24(08):34.
[9]尚福华,李想,巩淼. 基于模糊框架-产生式知识表示及推理研究[J].计算机技术与发展,2014,24(07):38.
 SHANG Fu-hua,LI Xiang,GONG Miao. Research on Knowledge Representation and Inference Based on Fuzzy Framework-production[J].,2014,24(08):38.
[10]叶偲,李良福,肖樟树. 一种去除运动目标重影的图像镶嵌方法研究[J].计算机技术与发展,2014,24(07):43.
 YE Si,LI Liang-fu,XIAO Zhang-shu. Research of an Image Mosaic Method for Removing Ghost of Moving Targets[J].,2014,24(08):43.

更新日期/Last Update: 2015-03-17