[1]李梦涵,熊淑华,熊文,等. 多尺度级联行人检测算法的研究与实现[J].计算机技术与发展,2014,24(08):10-13.
 LI Meng-han,XIONG Shu-hua,XIONG Wen,et al. Research and Realization of Pedestrian Detection Algorithm by Multi-scale Cascaded Features[J].,2014,24(08):10-13.
点击复制

 多尺度级联行人检测算法的研究与实现(/HTML)
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
24
期数:
2014年08期
页码:
10-13
栏目:
智能、算法、系统工程
出版日期:
2014-08-10

文章信息/Info

Title:
 Research and Realization of Pedestrian Detection Algorithm by Multi-scale Cascaded Features
文章编号:
1673-629X(2014)08-0010-04
作者:
 李梦涵熊淑华熊文魏育才李杨
 四川大学 电子信息学院
Author(s):
 LI Meng-han;XIONG Shu-hua;XIONG Wen;WEI Yu-cai;LI Yang
关键词:
 行人检测方向梯度直方图多尺度级联Adaboost
Keywords:
 pedestrian detectionHOGmulti-scalecascaded Adaboost
分类号:
TP301.6
文献标志码:
A
Abstract:
 Pedestrian detection algorithm is a method to decide whether there exists pedestrian or not in the picture by characters of pedes-trians combined with classifiers. In this paper,an improved pedestrian detection algorithm is advanced based on the traditional HOG meth-od and Adaboost classifying idea. In this algorithm,use the multi-scale HOG features to extract the features in the detection region,then the cascaded Adaboost classifiers with multi-scale features are used to judge,getting its result input into the next level of classifier,and fi-nally achieve the goal of pedestrian detection. The experimental result shows that the cascaded classifiers using multi-scale features per-forms better in pedestrian detection,which achieves higher detection precision at little cost of computing time.

相似文献/References:

[1]牛杰 钱堃.基于多尺度-多形状HOG特征的行人检测方法[J].计算机技术与发展,2011,(09):99.
 NIU Jie,QIAN Kun.Pedestrian Detection Based on Multi-Scale and Multi-Shape HOG Features[J].,2011,(08):99.
[2]张志宏,吴庆波,邵立松,等.基于飞腾平台TOE协议栈的设计与实现[J].计算机技术与发展,2014,24(07):1.
 ZHANG Zhi-hong,WU Qing-bo,SHAO Li-song,et al. Design and Implementation of TCP/IP Offload Engine Protocol Stack Based on FT Platform[J].,2014,24(08):1.
[3]梁文快,李毅. 改进的基因表达算法对航班优化排序问题研究[J].计算机技术与发展,2014,24(07):5.
 LIANG Wen-kuai,LI Yi. Research on Optimization of Flight Scheduling Problem Based on Improved Gene Expression Algorithm[J].,2014,24(08):5.
[4]黄静,王枫,谢志新,等. EAST文档管理系统的设计与实现[J].计算机技术与发展,2014,24(07):13.
 HUANG Jing,WANG Feng,XIE Zhi-xin,et al. Design and Implementation of EAST Document Management System[J].,2014,24(08):13.
[5]侯善江[],张代远[][][]. 基于样条权函数神经网络P2P流量识别方法[J].计算机技术与发展,2014,24(07):21.
 HOU Shan-jiang[],ZHANG Dai-yuan[][][]. P2P Traffic Identification Based on Spline Weight Function Neural Network[J].,2014,24(08):21.
[6]李璨,耿国华,李康,等. 一种基于三维模型的文物碎片线图生成方法[J].计算机技术与发展,2014,24(07):25.
 LI Can,GENG Guo-hua,LI Kang,et al. A Method of Obtaining Cultural Debris’ s Line Chart Based on Three-dimensional Model[J].,2014,24(08):25.
[7]翁鹤,皮德常. 混沌RBF神经网络异常检测算法[J].计算机技术与发展,2014,24(07):29.
 WENG He,PI De-chang. Chaotic RBF Neural Network Anomaly Detection Algorithm[J].,2014,24(08):29.
[8]刘茜[],荆晓远[],李文倩[],等. 基于流形学习的正交稀疏保留投影[J].计算机技术与发展,2014,24(07):34.
 LIU Qian[],JING Xiao-yuan[,LI Wen-qian[],et al. Orthogonal Sparsity Preserving Projections Based on Manifold Learning[J].,2014,24(08):34.
[9]尚福华,李想,巩淼. 基于模糊框架-产生式知识表示及推理研究[J].计算机技术与发展,2014,24(07):38.
 SHANG Fu-hua,LI Xiang,GONG Miao. Research on Knowledge Representation and Inference Based on Fuzzy Framework-production[J].,2014,24(08):38.
[10]叶偲,李良福,肖樟树. 一种去除运动目标重影的图像镶嵌方法研究[J].计算机技术与发展,2014,24(07):43.
 YE Si,LI Liang-fu,XIAO Zhang-shu. Research of an Image Mosaic Method for Removing Ghost of Moving Targets[J].,2014,24(08):43.
[11]赵金金,姚汉利,鲍文霞. 基于部件模型及颜色信息的行人检测[J].计算机技术与发展,2017,27(11):58.
 ZHAO Jin-jin,YAO Han-li,BAO Wen-xia. Pedestrian Detection Based on Part Model and Color Information[J].,2017,27(08):58.

更新日期/Last Update: 2015-03-17