[1]胡燕平[,丁强[],李莉[],等. RDS模型及其在移动终端智能引擎中的应用[J].计算机技术与发展,2014,24(07):223-225.
 HU Yan-ping[],DING Qiang[],LI Li[],et al. RDS Model and Its Application in Mobile Terminal Intelligent Engine[J].,2014,24(07):223-225.
点击复制

 RDS模型及其在移动终端智能引擎中的应用()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
24
期数:
2014年07期
页码:
223-225
栏目:
应用开发研究
出版日期:
2014-07-10

文章信息/Info

Title:
 RDS Model and Its Application in Mobile Terminal Intelligent Engine
文章编号:
1673-629X(2014)07-0223-03
作者:
 胡燕平[1丁强[2]李莉[2]娄梦茜[1]孙知信[1]
 1.南京邮电大学 物联网学院;2.华为技术有限公司 中央研究院
Author(s):
 HU Yan-ping[1]DING Qiang[2]LI Li[2]LOU Meng-qian[1]SUN Zhi-xin[1]
关键词:
 D-S证据理论移动终端智能引擎随机集
Keywords:
 Dempster-Shafer theorymobile terminalintelligent enginerandom sets
分类号:
TP39
文献标志码:
A
摘要:
 信息技术的不断革新与计算机水平的不断提高稳固了移动终端的市场地位。手机、平板等智能终端早已成为人们工作生活的“密友”。满足移动终端用户个性化的需求,高效的海量数据收集处理,是移动终端的智能引擎研究的意义所在。文中主要利用Random Set ( RS)对Dempster-Shafer ( D-S)理论进行改进,简称为RDS模型并验证了对证据理论的证据源模型与合成框架做的修改,可以降低焦元爆炸的概率,提高本地推理的正确率,进而优化移动智能引擎的推理机制,实现个性化的服务推荐等更多平台化服务。
Abstract:
 The information technology innovation and the computer level enhancement consolidate the level of stable mobile terminal mar-ket position ceaselessly. Mobile phones,PPC and other intelligent terminals have been friends to users’ life and work. To meet the person-alized requirements of users,efficient mass data collection and handling from mobile terminals are of significance to the mobile terminal intelligent engine. Random Set ( RS) theory is applied in Dempster-Shafe ( D-S) theory in the approach,RDS for short,is proved that it can lower the probability of focal elements explosion and improve the accuracy of local reasoning to optimize the reasoning mechanism of mobile terminal intelligent engine and realize service recommendation or other personalized services from the platform of mobile terminal intelligent engine through the modification of evidence of the source model and synthetic framework.

相似文献/References:

[1]董增寿,邓丽君,曾建潮.一种新的基于证据权重的D-S改进算法[J].计算机技术与发展,2013,(05):58.
 DONG Zeng-shou,DENG Li-jun,ZENG Jian-chao.A New Improved D-S Algorithm Based on Weight of Evidence[J].,2013,(07):58.
[2]雷虎,樊泽明.基于SVM和D-S理论的三维人脸识别[J].计算机技术与发展,2014,24(06):75.
 LEI Hu[],FAN Ze-ming[].3 D Face Recognition Based on SVM and D-S Evidence Theory[J].,2014,24(07):75.
[3]张志宏,吴庆波,邵立松,等.基于飞腾平台TOE协议栈的设计与实现[J].计算机技术与发展,2014,24(07):1.
 ZHANG Zhi-hong,WU Qing-bo,SHAO Li-song,et al. Design and Implementation of TCP/IP Offload Engine Protocol Stack Based on FT Platform[J].,2014,24(07):1.
[4]梁文快,李毅. 改进的基因表达算法对航班优化排序问题研究[J].计算机技术与发展,2014,24(07):5.
 LIANG Wen-kuai,LI Yi. Research on Optimization of Flight Scheduling Problem Based on Improved Gene Expression Algorithm[J].,2014,24(07):5.
[5]黄静,王枫,谢志新,等. EAST文档管理系统的设计与实现[J].计算机技术与发展,2014,24(07):13.
 HUANG Jing,WANG Feng,XIE Zhi-xin,et al. Design and Implementation of EAST Document Management System[J].,2014,24(07):13.
[6]侯善江[],张代远[][][]. 基于样条权函数神经网络P2P流量识别方法[J].计算机技术与发展,2014,24(07):21.
 HOU Shan-jiang[],ZHANG Dai-yuan[][][]. P2P Traffic Identification Based on Spline Weight Function Neural Network[J].,2014,24(07):21.
[7]李璨,耿国华,李康,等. 一种基于三维模型的文物碎片线图生成方法[J].计算机技术与发展,2014,24(07):25.
 LI Can,GENG Guo-hua,LI Kang,et al. A Method of Obtaining Cultural Debris’ s Line Chart Based on Three-dimensional Model[J].,2014,24(07):25.
[8]翁鹤,皮德常. 混沌RBF神经网络异常检测算法[J].计算机技术与发展,2014,24(07):29.
 WENG He,PI De-chang. Chaotic RBF Neural Network Anomaly Detection Algorithm[J].,2014,24(07):29.
[9]刘茜[],荆晓远[],李文倩[],等. 基于流形学习的正交稀疏保留投影[J].计算机技术与发展,2014,24(07):34.
 LIU Qian[],JING Xiao-yuan[,LI Wen-qian[],et al. Orthogonal Sparsity Preserving Projections Based on Manifold Learning[J].,2014,24(07):34.
[10]尚福华,李想,巩淼. 基于模糊框架-产生式知识表示及推理研究[J].计算机技术与发展,2014,24(07):38.
 SHANG Fu-hua,LI Xiang,GONG Miao. Research on Knowledge Representation and Inference Based on Fuzzy Framework-production[J].,2014,24(07):38.

更新日期/Last Update: 2015-03-17