[1]李广水[][],田海梅[],李涛[]. 模糊评价体系中关键影响因素的挖掘[J].计算机技术与发展,2014,24(07):206-209.
  Mining of Key Factors in Fuzzy Evaluation System[J].,2014,24(07):206-209.
点击复制

 模糊评价体系中关键影响因素的挖掘()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
24
期数:
2014年07期
页码:
206-209
栏目:
应用开发研究
出版日期:
2014-07-10

文章信息/Info

Title:
 Mining of Key Factors in Fuzzy Evaluation System
文章编号:
1673-629X(2014)07-0209-04
作者:
 李广水[1][2]田海梅[1]李涛[1]
 1.金陵科技学院 信息技术学院;2.江苏省信息分析工程实验室
Author(s):
 LI Guang-shui[1] [2],TIAN Hai-mei[1] LI Tao[1]
关键词:
 大学生综合能力评价频繁项集关键影响因子模糊评价法
Keywords:
 evaluation of college student’ s comprehensive abilityfrequent item setskey factorfuzzy evaluation method
分类号:
G645
文献标志码:
A
摘要:
 当前对学生某一方面的能力评价主要采用多层次、主客观共存的评价体系,因此模糊评价法得到广泛采用。为了有效提高测评数据的主观评判的准确性并更好地指导学生在未来的学习实践,提出了利用频繁项集挖掘出评价体系的关键影响因素及其取值范围。首先将多层次的评价体系构建成易于频繁项集挖掘的数据集,通过对某一综合评价等级下频繁出现的评价因素及其取值的挖掘,构建出关键因子序列。仿真实验验证了该方法的合理性。
Abstract:
 Presently the ability of a student evaluation mainly adopts evaluation system of multi-leveled subjectivity and objectivity. Therefore,the fuzzy evaluation method has been widely adopted. In order to improve the accuracy and better subjective evaluation data of the students in the future study and practice,propose the use of mining frequent item sets out the key influence factors of evaluation sys-tem and range. After building the multi-leveled evaluation system into the data set which could be mining out frequent item sets,the key factor sequence is constructed according to every comprehensive level. The simulation results show the rationality of this method.

相似文献/References:

[1]张志宏,吴庆波,邵立松,等.基于飞腾平台TOE协议栈的设计与实现[J].计算机技术与发展,2014,24(07):1.
 ZHANG Zhi-hong,WU Qing-bo,SHAO Li-song,et al. Design and Implementation of TCP/IP Offload Engine Protocol Stack Based on FT Platform[J].,2014,24(07):1.
[2]梁文快,李毅. 改进的基因表达算法对航班优化排序问题研究[J].计算机技术与发展,2014,24(07):5.
 LIANG Wen-kuai,LI Yi. Research on Optimization of Flight Scheduling Problem Based on Improved Gene Expression Algorithm[J].,2014,24(07):5.
[3]黄静,王枫,谢志新,等. EAST文档管理系统的设计与实现[J].计算机技术与发展,2014,24(07):13.
 HUANG Jing,WANG Feng,XIE Zhi-xin,et al. Design and Implementation of EAST Document Management System[J].,2014,24(07):13.
[4]侯善江[],张代远[][][]. 基于样条权函数神经网络P2P流量识别方法[J].计算机技术与发展,2014,24(07):21.
 HOU Shan-jiang[],ZHANG Dai-yuan[][][]. P2P Traffic Identification Based on Spline Weight Function Neural Network[J].,2014,24(07):21.
[5]李璨,耿国华,李康,等. 一种基于三维模型的文物碎片线图生成方法[J].计算机技术与发展,2014,24(07):25.
 LI Can,GENG Guo-hua,LI Kang,et al. A Method of Obtaining Cultural Debris’ s Line Chart Based on Three-dimensional Model[J].,2014,24(07):25.
[6]翁鹤,皮德常. 混沌RBF神经网络异常检测算法[J].计算机技术与发展,2014,24(07):29.
 WENG He,PI De-chang. Chaotic RBF Neural Network Anomaly Detection Algorithm[J].,2014,24(07):29.
[7]刘茜[],荆晓远[],李文倩[],等. 基于流形学习的正交稀疏保留投影[J].计算机技术与发展,2014,24(07):34.
 LIU Qian[],JING Xiao-yuan[,LI Wen-qian[],et al. Orthogonal Sparsity Preserving Projections Based on Manifold Learning[J].,2014,24(07):34.
[8]尚福华,李想,巩淼. 基于模糊框架-产生式知识表示及推理研究[J].计算机技术与发展,2014,24(07):38.
 SHANG Fu-hua,LI Xiang,GONG Miao. Research on Knowledge Representation and Inference Based on Fuzzy Framework-production[J].,2014,24(07):38.
[9]叶偲,李良福,肖樟树. 一种去除运动目标重影的图像镶嵌方法研究[J].计算机技术与发展,2014,24(07):43.
 YE Si,LI Liang-fu,XIAO Zhang-shu. Research of an Image Mosaic Method for Removing Ghost of Moving Targets[J].,2014,24(07):43.
[10]余松平[][],蔡志平[],吴建进[],等. GSM-R信令监测选择录音系统设计与实现[J].计算机技术与发展,2014,24(07):47.
 YU Song-ping[][],CAI Zhi-ping[] WU Jian-jin[],GU Feng-zhi[]. Design and Implementation of an Optional Voice Recording System Based on GSM-R Signaling Monitoring[J].,2014,24(07):47.

更新日期/Last Update: 2015-03-17