[1]董胡. 倒谱距离和短时能量的语音端点检测方法研究[J].计算机技术与发展,2014,24(07):77-79.
 DONG Hu. Study on Speech Endpoint Detection Based on Cepstrum Distance and Short-time Energy[J].,2014,24(07):77-79.
点击复制

 倒谱距离和短时能量的语音端点检测方法研究()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
24
期数:
2014年07期
页码:
77-79
栏目:
智能、算法、系统工程
出版日期:
2014-07-10

文章信息/Info

Title:
 Study on Speech Endpoint Detection Based on Cepstrum Distance and Short-time Energy
文章编号:
1673-629X(2014)07-0077-03
作者:
 董胡
 长沙师范学院 电子信息工程系
Author(s):
 DONG Hu
关键词:
 倒谱距离短时能量双参数信噪比
Keywords:
 cepstrum distanceshort-time energydouble parametersignal-to-noise ratio
分类号:
TN912.35
文献标志码:
A
摘要:
 在讨论传统倒谱距离语音端点检测方法不足的基础上,提出了一种基于倒谱距离和短时能量的语音端点检测改进方法。基于倒谱距离的单参数端点检测方法在高信噪比环境下效果较好,然而在低信噪比的环境下其端点检测性能急剧下降。通过分析倒谱距离和短时能量各自的端点检测特性,建立了一种结合二者特点的双参数判决准则,在保证运算量没有显著增大的前提下提高了端点检测的准确率。仿真实验结果表明,新方法相对于基本倒谱距离端点检测方法,在低信噪比的高斯白噪声环境下端点检测性能有较明显提高。
Abstract:
 Based on the shortages discussion of traditional cepstrum distance speech endpoint detection method,the speech endpoint detec-tion method based on cepstrum distance and short-time energy is proposed. The endpoint detection method of single parameter of ceps-trum distance is effective in high SNR environment, but the endpoint detection performance falls sharply in low SNR environment. Through the analysis of cepstrum distance and short-time energy endpoint detection features,combined the characteristics of double pa-rameters establish a judgment criteria,which improves the accuracy of endpoint detection under the premise of no significant increase in computational complexity. By comparing the new method with traditional cepstrum distance speech endpoint detection method,simulation experimental results show that the new method for endpoint detection performance is improved obviously under Gaussian white noise in low SNR environment.

相似文献/References:

[1]张志宏,吴庆波,邵立松,等.基于飞腾平台TOE协议栈的设计与实现[J].计算机技术与发展,2014,24(07):1.
 ZHANG Zhi-hong,WU Qing-bo,SHAO Li-song,et al. Design and Implementation of TCP/IP Offload Engine Protocol Stack Based on FT Platform[J].,2014,24(07):1.
[2]梁文快,李毅. 改进的基因表达算法对航班优化排序问题研究[J].计算机技术与发展,2014,24(07):5.
 LIANG Wen-kuai,LI Yi. Research on Optimization of Flight Scheduling Problem Based on Improved Gene Expression Algorithm[J].,2014,24(07):5.
[3]黄静,王枫,谢志新,等. EAST文档管理系统的设计与实现[J].计算机技术与发展,2014,24(07):13.
 HUANG Jing,WANG Feng,XIE Zhi-xin,et al. Design and Implementation of EAST Document Management System[J].,2014,24(07):13.
[4]侯善江[],张代远[][][]. 基于样条权函数神经网络P2P流量识别方法[J].计算机技术与发展,2014,24(07):21.
 HOU Shan-jiang[],ZHANG Dai-yuan[][][]. P2P Traffic Identification Based on Spline Weight Function Neural Network[J].,2014,24(07):21.
[5]李璨,耿国华,李康,等. 一种基于三维模型的文物碎片线图生成方法[J].计算机技术与发展,2014,24(07):25.
 LI Can,GENG Guo-hua,LI Kang,et al. A Method of Obtaining Cultural Debris’ s Line Chart Based on Three-dimensional Model[J].,2014,24(07):25.
[6]翁鹤,皮德常. 混沌RBF神经网络异常检测算法[J].计算机技术与发展,2014,24(07):29.
 WENG He,PI De-chang. Chaotic RBF Neural Network Anomaly Detection Algorithm[J].,2014,24(07):29.
[7]刘茜[],荆晓远[],李文倩[],等. 基于流形学习的正交稀疏保留投影[J].计算机技术与发展,2014,24(07):34.
 LIU Qian[],JING Xiao-yuan[,LI Wen-qian[],et al. Orthogonal Sparsity Preserving Projections Based on Manifold Learning[J].,2014,24(07):34.
[8]尚福华,李想,巩淼. 基于模糊框架-产生式知识表示及推理研究[J].计算机技术与发展,2014,24(07):38.
 SHANG Fu-hua,LI Xiang,GONG Miao. Research on Knowledge Representation and Inference Based on Fuzzy Framework-production[J].,2014,24(07):38.
[9]叶偲,李良福,肖樟树. 一种去除运动目标重影的图像镶嵌方法研究[J].计算机技术与发展,2014,24(07):43.
 YE Si,LI Liang-fu,XIAO Zhang-shu. Research of an Image Mosaic Method for Removing Ghost of Moving Targets[J].,2014,24(07):43.
[10]余松平[][],蔡志平[],吴建进[],等. GSM-R信令监测选择录音系统设计与实现[J].计算机技术与发展,2014,24(07):47.
 YU Song-ping[][],CAI Zhi-ping[] WU Jian-jin[],GU Feng-zhi[]. Design and Implementation of an Optional Voice Recording System Based on GSM-R Signaling Monitoring[J].,2014,24(07):47.

更新日期/Last Update: 2015-03-13