[1]梁海. MongoDB数据库中Sharding技术应用研究[J].计算机技术与发展,2014,24(07):60-62.
 LIANG Hai. Application and Research on Sharding Technology in MongoDB Database[J].,2014,24(07):60-62.
点击复制

 MongoDB数据库中Sharding技术应用研究()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
24
期数:
2014年07期
页码:
60-62
栏目:
智能、算法、系统工程
出版日期:
2014-07-10

文章信息/Info

Title:
 Application and Research on Sharding Technology in MongoDB Database
文章编号:
1673-629X(2014)07-0060-03
作者:
 梁海
 桂林电子科技大学 计算机科学与工程学院
Author(s):
LIANG Hai
关键词:
 非关系型数据库性能测试MongoDBSharding
Keywords:
 non-relational databasesperformance testMongoDBSharding
分类号:
TP39
文献标志码:
A
摘要:
 非关系型数据库的出现,对于解决面向文档的超大规模和高并发的问题提供了卓有成效的解决方案。 MongoDB为了提高处理大数据量的性能,提供了分片集群的功能,支持自动分片和划分架构,可以利用它构建一个水平扩展的数据库集群系统,将数据库分表存储在各个Sharding节点上。文中在研究MongoDB特性的基础上,着重分析Sharding技术的应用,通过比较普通和分片这两种情况下的性能测试,提出使用MongoDB中的Sharding技术来解决随着数据量增加带来的数据库的读写性能和效率的问题。
Abstract:
 The emergence of non-relational databases,provide the effective solutions for the problems of large scale and high concurrency oriented document. In order to improve the performance of processing large amounts of data,MongoDB provides the ability to patch clus-ters,supports automatic partitioning and divides a schema,can use it to build a horizontal extension of the database cluster system,the da-tabase tables are stored in the Sharding node. Based on research of MongoDB feature,focus on the application of Sharding,through com-paring normal and Sharding in both cases of performance testing,present to use the Sharding in MongoDB for solving the problems of da-tabase reading and writing performance and efficiency generated by data volumes increasing.

相似文献/References:

[1]何杭锋.基于FODO算法MongoDB自动分片的改进[J].计算机技术与发展,2013,(07):127.
 HE Hang-feng.Improvement of MongoDB Auto-sharding Based on FODO[J].,2013,(07):127.
[2]张志宏,吴庆波,邵立松,等.基于飞腾平台TOE协议栈的设计与实现[J].计算机技术与发展,2014,24(07):1.
 ZHANG Zhi-hong,WU Qing-bo,SHAO Li-song,et al. Design and Implementation of TCP/IP Offload Engine Protocol Stack Based on FT Platform[J].,2014,24(07):1.
[3]梁文快,李毅. 改进的基因表达算法对航班优化排序问题研究[J].计算机技术与发展,2014,24(07):5.
 LIANG Wen-kuai,LI Yi. Research on Optimization of Flight Scheduling Problem Based on Improved Gene Expression Algorithm[J].,2014,24(07):5.
[4]黄静,王枫,谢志新,等. EAST文档管理系统的设计与实现[J].计算机技术与发展,2014,24(07):13.
 HUANG Jing,WANG Feng,XIE Zhi-xin,et al. Design and Implementation of EAST Document Management System[J].,2014,24(07):13.
[5]侯善江[],张代远[][][]. 基于样条权函数神经网络P2P流量识别方法[J].计算机技术与发展,2014,24(07):21.
 HOU Shan-jiang[],ZHANG Dai-yuan[][][]. P2P Traffic Identification Based on Spline Weight Function Neural Network[J].,2014,24(07):21.
[6]李璨,耿国华,李康,等. 一种基于三维模型的文物碎片线图生成方法[J].计算机技术与发展,2014,24(07):25.
 LI Can,GENG Guo-hua,LI Kang,et al. A Method of Obtaining Cultural Debris’ s Line Chart Based on Three-dimensional Model[J].,2014,24(07):25.
[7]翁鹤,皮德常. 混沌RBF神经网络异常检测算法[J].计算机技术与发展,2014,24(07):29.
 WENG He,PI De-chang. Chaotic RBF Neural Network Anomaly Detection Algorithm[J].,2014,24(07):29.
[8]刘茜[],荆晓远[],李文倩[],等. 基于流形学习的正交稀疏保留投影[J].计算机技术与发展,2014,24(07):34.
 LIU Qian[],JING Xiao-yuan[,LI Wen-qian[],et al. Orthogonal Sparsity Preserving Projections Based on Manifold Learning[J].,2014,24(07):34.
[9]尚福华,李想,巩淼. 基于模糊框架-产生式知识表示及推理研究[J].计算机技术与发展,2014,24(07):38.
 SHANG Fu-hua,LI Xiang,GONG Miao. Research on Knowledge Representation and Inference Based on Fuzzy Framework-production[J].,2014,24(07):38.
[10]叶偲,李良福,肖樟树. 一种去除运动目标重影的图像镶嵌方法研究[J].计算机技术与发展,2014,24(07):43.
 YE Si,LI Liang-fu,XIAO Zhang-shu. Research of an Image Mosaic Method for Removing Ghost of Moving Targets[J].,2014,24(07):43.

更新日期/Last Update: 2015-03-13