[1]宋发兴,高留洋,刘东升,等.基于粒子群优化的BP神经网络图像复原方法[J].计算机技术与发展,2014,24(06):149-152.
 SONG Fa-xing,GAO Liu-yang,LIU Dong-sheng,et al.A Method of Image Restoration Based on Particle Swarm Optimization for BP Neural Network[J].,2014,24(06):149-152.
点击复制

基于粒子群优化的BP神经网络图像复原方法()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
24
期数:
2014年06期
页码:
149-152
栏目:
智能、算法、系统工程
出版日期:
2014-06-30

文章信息/Info

Title:
A Method of Image Restoration Based on Particle Swarm Optimization for BP Neural Network
文章编号:
1673-629X(2014)06-0149-04
作者:
宋发兴高留洋刘东升米兰刘力维
中国洛阳电子装备试验中心
Author(s):
SONG Fa-xingGAO Liu-yangLIU Dong-shengMI LanLIU Li-wei
关键词:
BP神经网络粒子群优化图像复原
Keywords:
BP neural networkparticle swarm optimizationimage restoration
分类号:
TN911.73
文献标志码:
A
摘要:
针对BP神经网络易陷入局部最小、收敛速度慢的问题,研究了基于粒子群优化的学习算法,给出了具体的算法方案设计,并将其应用于图像复原。首先用高斯噪声对无噪图像进行模糊处理;然后将结果和原图像组成训练对,用于训练优化后的神经网络;最后利用训练好的神经网络对测试图像进行复原,从而达到去除噪声的目的。仿真结果表明,与BP神经网络相比, PSO-BP算法收敛速度快,迭代次数少,复原的图像在归一化均方误差(NMSE)和峰值信噪比(PSNR)的效果更好。
Abstract:
Aiming at the problem of local minimum,slow convergence of the BP neural network,the learning algorithm based on particle swarm optimization is designed and analyzed,which is applied to image restoration. Firstly,noiseless images are processed by Gaussian noise. Then,the result image and the noiseless images are made training pair,which is used in training the optimized BP neural network. Lastly,use the BP neural network to restore test images for the purpose of removing noise. The simulation results show that the effect of PSO-BP algorithm to recover the image have fast convergence rate and less iterations,is better than the BP neural network both in Nor-malized Mean Square Error ( NMSE) and the Peak Signal to Noise Ratio ( PSNR) .

相似文献/References:

[1]王菲露 宋杰 宋杨.BP神经网络在蛋白质二级结构预测中的应用[J].计算机技术与发展,2009,(05):217.
 WANG Fei-lu,SONG Jie,SONG Yang.Application of BP Neural Network in Protein Secondary Structure Prediction[J].,2009,(06):217.
[2]李秉 王凤山 李晓军.一种弹炮结合武器系统作战效能评估方法[J].计算机技术与发展,2009,(06):217.
 LI Bing,WANG Feng-shan,LI Xiao-jun.An Evaluation Method of Operational Effectiveness of Anti - Aircraft Gun Missile Weapon System[J].,2009,(06):217.
[3]贾其燕 王友仁 崔江.一种基于遗传算法的动态电流测试生成方法[J].计算机技术与发展,2009,(06):225.
 JIA Qi-yan,WANG You-ren,CUI Jiang.A Dynamic Current Test Generation Method Based on Genetic Algorithm[J].,2009,(06):225.
[4]王宁.一种基于BP神经网络的即时在线推荐系统[J].计算机技术与发展,2009,(07):230.
 WANG Ning.An Online Recommendation System Based on BP Network[J].,2009,(06):230.
[5]钟以维 徐应涛 张莹.用填充函数法改进的人脸比对算法[J].计算机技术与发展,2009,(08):78.
 ZHONG Yi-wei,XU Ying-tao,ZHANG Ying.Face Comparison Algorithm Based on Filled Function Method[J].,2009,(06):78.
[6]夏玫 陈立潮 王新波.一种提高BP神经网络泛化能力的改进算法[J].计算机技术与发展,2009,(09):62.
 XIA Mei,CHEN Li-chao,WANG Xin-bo.A Modified Algorithm to Improve Generalization Ability of BP Neural Network[J].,2009,(06):62.
[7]洪素惠 吴发成 米红.神经网络自适应PID在吹瓶机中的应用[J].计算机技术与发展,2009,(09):177.
 HONG Su-hui,WU Fa-cheng,MI Hong.Adaptive PID Controller Based on Neural Networks in Stretch Blow Molding[J].,2009,(06):177.
[8]崔海青 刘希玉.基于粒子群算法的RBF网络参数优化算法[J].计算机技术与发展,2009,(12):117.
 CUI Hai-qing,LIU Xi-yu.Parameter Optimization Algorithm of RBF Neural Network Based on PSO Algorithm[J].,2009,(06):117.
[9]陆克中 吴璞 王汝传.基于粒子群优化算法的非线性系统模型参数估计[J].计算机技术与发展,2008,(06):57.
 LU Ke-zhong,WU Pu,WANG Ru-chuan.A Method of Parameter Estimation in a Nonlinear System Model Based on Particle Swarm Optimization[J].,2008,(06):57.
[10]赵传信 张雪东 季一木[].改进的粒子群算法在VRP中的应用[J].计算机技术与发展,2008,(06):240.
 ZHAO Chuan-xin,ZHANG Xue-dong,JI Yi-mu.Application of Improved Particle Swarm Optimization in VRP[J].,2008,(06):240.
[11]张奇 黄卫东.构建基于PSO—BP网络的电信客户信用度评估模型[J].计算机技术与发展,2012,(12):146.
 ZHANG Qi,HUANG Wei-dong.Construction of Credit Evaluation Model for Telecommunication Clients Based on PSO-BP Neural Network[J].,2012,(06):146.
[12]邓文杰. 基于聚粒子群算法的神经网络权值优化方法[J].计算机技术与发展,2017,27(10):16.
 DENG Wen-jie. A Neural Network Weights Optimization Method Based on Clustering Particle Swarm Optimization[J].,2017,27(06):16.

更新日期/Last Update: 1900-01-01