[1]黄谭,苏一丹.基于混合用户模型的二分图推荐算法[J].计算机技术与发展,2014,24(06):145-148.
 HUANG Tan,SU Yi-dan.Bipartite Graph Recommendation Algorithm Based on Hybrid User Model[J].,2014,24(06):145-148.
点击复制

基于混合用户模型的二分图推荐算法()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
24
期数:
2014年06期
页码:
145-148
栏目:
智能、算法、系统工程
出版日期:
2014-06-30

文章信息/Info

Title:
Bipartite Graph Recommendation Algorithm Based on Hybrid User Model
文章编号:
1673-629X(2014)06-0145-04
作者:
黄谭苏一丹
广西大学 计算机与电子信息学院
Author(s):
HUANG TanSU Yi-dan
关键词:
混合用户模型二分图多样性个性化推荐
Keywords:
hybrid user modelbipartite graphdiversitypersonalized recommendation
分类号:
TP301.6
文献标志码:
A
摘要:
用二分图来实现个性化推荐的算法越来越受到研究者的注意。文中提出混合用户模型下的二分图推荐算法( MN-BI),针对二分图推荐算法中存在的用户多、项目少时命中效率低的情况用混合用户模型进行改进,同时对于推荐中加权的二分图边的权值用用户集的总体的加权和进行改进。该算法基本思想就是在用户很多的情况下,用混合用户模型对用户首先进行一个预处理生成一定数量的用户集,然后用用户集和项目构成用户集-项目的二分图。通过在Movielens数据集中进行测试的实验结果表明,相比NBI算法,MNBI算法推荐的命中效率有一定的提高,同时对于推荐多样性有所提高,并且在数据冷启动情况下效果较好。
Abstract:
With the bipartite graph to achieve personalized recommendation algorithm has received more and more attention of research-ers. Present bipartite graph recommendation algorithm based on the hybrid user model ( MNBI) ,aiming at cases of the bipartite graph rec-ommendations algorithm in the presence of multiple users,low project,use hybrid user model to improve,at the same time for the bipartite graph recommendations of weighted edge weights for users to have the overall weighted improved. The basic idea of the algorithm is,u-sing hybrid user model to make a pretreatment for user,generating a certain number of user set when the number of the users is huge,and then use the user sets and project set to construct user-figure two bipartite graph. By focusing on the Movielens data to test the experimen-tal results show that,compared with NBI algorithm,MNBI algorithm recommended hit efficiency is improved,at the same time for recom-mendation diversity increased,and has good effect in the user data cold start conditions.

相似文献/References:

[1]郝水侠 李凡长.构建一种多agent并行计算模型[J].计算机技术与发展,2006,(05):71.
 HAO Shui-xia,LI Fan-zhang.Designing a Kind of Multi- agent Parallel Computing Model[J].,2006,(06):71.

更新日期/Last Update: 1900-01-01