[1]樊玮,鲁胜华.基于眼动仪的飞行员疲劳判定相关属性研究[J].计算机技术与发展,2014,24(06):15-18.
 FAN Wei,LU Sheng-hua.Research on Related Attribute of Pilot Fatigue Based on Eye Tracker[J].,2014,24(06):15-18.
点击复制

基于眼动仪的飞行员疲劳判定相关属性研究()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
24
期数:
2014年06期
页码:
15-18
栏目:
智能、算法、系统工程
出版日期:
2014-06-30

文章信息/Info

Title:
Research on Related Attribute of Pilot Fatigue Based on Eye Tracker
文章编号:
1673-629X(2014)06-0015-04
作者:
樊玮鲁胜华
中国民航大学 计算机科学与技术学院
Author(s):
FAN WeiLU Sheng-hua
关键词:
驾驶疲劳粗糙集属性约简二元信道精神运动警戒任务
Keywords:
driving fatiguerough setattribute reductionbinary channelpsychomotor vigilance task
分类号:
TP31
文献标志码:
A
摘要:
飞行员驾驶疲劳是影响飞行安全的重要因素之一。眼动仪已被尝试应用于驾驶人员的疲劳检测,但眼动仪采集数据属性较多,且缺乏明确的疲劳判定决策属性,故将PVT(精神运动警戒任务)测量所得疲劳程度组合进眼动仪测量数据中,作为决策属性,采用基于二元信道互信息的粗糙集属性约简方法,进行针对疲劳判定的眼动仪属性知识约简,并在约简前后,分别采用BP神经网络进行分类计算。结果表明,将二元信道互信息作为启发式信息,进行以疲劳判定为目标的眼动仪属性约简,能有效提取反映飞行员驾驶疲劳的主要属性。
Abstract:
Pilot's driving fatigue is one of the important factors that affect flight safety. Eye tracker has been trying to apply to driver fa-tigue detection,but eye tracker collects too many data attributes,lacks of a clear decision attribute. It will make PVT ( Psychomotor Vigi-lance Task) into the data get by eye tracker,as decision attribute,use the rough set attribute reduction method based on binary channel of mutual information for attributes reduction of eye tracker in view of the fatigue test,and before and after the reduction,use BP neural net-work to classify respectively. Results show that use the binary channel mutual information as the heuristic information to test fatigue by at-tribute reduction,it can effectively extract the main pilot fatigue properties.

相似文献/References:

[1]夏奇思 王汝传.基于属性约简的粗糙集海量数据分割算法研究[J].计算机技术与发展,2010,(04):5.
 XIA Qi-si,WANG Ru-chuan.Mass Data Partition for Rough Set on Attribute Reduction Algorithm[J].,2010,(06):5.
[2]张政超 关欣[] 何友 李应升 郭伟峰.粗糙集理论数据处理方法及其研究[J].计算机技术与发展,2010,(04):12.
 ZHANG Zheng-chao,GUAN Xin[],HE You,et al.Rough Sets Data Processing Method and Its Research[J].,2010,(06):12.
[3]杨乐婵 邓松 徐建辉.基于BP网络的洪灾风险评价算法[J].计算机技术与发展,2010,(04):232.
 YANG Le-chan,DENG Song,XU Jian-hui.Flood Risk Evaluation Algorithm on BP Net[J].,2010,(06):232.
[4]张学友 苗强 毛军军.基于粗糙度的一种分形维数计算方法[J].计算机技术与发展,2010,(05):136.
 ZHANG Xue-you,MIAO Qiang,MAO Jun-jun.A Calculation Method of Fractal Dimension Based on Roughness[J].,2010,(06):136.
[5]王伟 高亮 吴涛.粗糙集在经济分析中的应用[J].计算机技术与发展,2008,(04):158.
 WANG Wei,GAO Liang,WU Tao.Application of Rough Set in Economic Analysis[J].,2008,(06):158.
[6]李学文 王小刚.优势信息系统的属性约简算法[J].计算机技术与发展,2009,(08):107.
 LI Xue-wen,WANG Xiao-gang.Algorithm on Attribute Reduction in Dominance Information System Based on Dominance Relation[J].,2009,(06):107.
[7]徐沈 吴涛[] 李国成.产业结构调整的量化分析[J].计算机技术与发展,2009,(08):178.
 XU Shen,WU Tao,LI Guo-cheng.Quantitative Analysis on Adjustment of Industrial Structure[J].,2009,(06):178.
[8]申锦标 吕跃进.粗糙集的近似约简及其算法[J].计算机技术与发展,2009,(12):17.
 SHEN Jin-biao,LU Yue-jin.A Rough Set of Approximate Attribute Reduction and Its Algorithm[J].,2009,(06):17.
[9]王小菊 蒋芸 李永华.基于依赖度之差的属性重要性评分[J].计算机技术与发展,2009,(01):67.
 WANG Xiao-ju,JIANG Yun,LI Yong-hua.Significance of Attribute Evaluation Based on Dependable Difference[J].,2009,(06):67.
[10]汪小燕 杨思春.基于改进的二进制可辨矩阵的核增量式更新方法[J].计算机技术与发展,2009,(01):97.
 WANG Xiao-yan,YANG Si-chun.An Incremental Updating Approach to Compute a Core Based on Improved Binary Discernable Matrix[J].,2009,(06):97.

更新日期/Last Update: 1900-01-01