[1]郭冬梅.基于状态压缩的最长公共上升子序列快速算法[J].计算机技术与发展,2014,24(05):40-43.
 GUO Dong-mei.A Longest Common Increasing Subsequence Algorithm Based on State Compression[J].,2014,24(05):40-43.
点击复制

基于状态压缩的最长公共上升子序列快速算法()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
24
期数:
2014年05期
页码:
40-43
栏目:
智能、算法、系统工程
出版日期:
2014-05-31

文章信息/Info

Title:
A Longest Common Increasing Subsequence Algorithm Based on State Compression
文章编号:
1673-629X(2014)05-0040-04
作者:
郭冬梅
安徽理工大学 计算机科学与工程学院
Author(s):
GUO Dong-mei
关键词:
最长公共上升子序列最长公共子序列最长上升子序列动态规划状态压缩
Keywords:
LCISLCSLISdynamic programmingstate compression
分类号:
TP391
文献标志码:
A
摘要:
探讨了最长公共上升子序列(LCIS)问题,在前人算法的基础上提出一种高效求解LCIS的动态规划算法。对于LCIS问题,分别使用最长公共子序列(LCS)和最长上升子序列(LIS)相结合的算法、动态规划算法、经过状态压缩的改进动态规划算法进行设计,并对后两种算法进行了实现。设计的状态压缩的动态规划算法,实现了LCIS的快速求解。通过分析这三种算法的时间和空间复杂度,最终提出了时间复杂度为O(mn)、空间复杂度为O(m)或O(n)的基于状态压缩的快速LCIS算法。
Abstract:
Discussed the problem of a Longest Common Increasing Subsequence ( LCIS) ,put forword a fast dynamic algorithm for LCIS. For the LCIS problem,used respectively the algorithm of a Longest Common Subsequence ( LCS) combined a Longest Increasing Subse-quence (LIS) algorithm,dynamic programming algorithm,improved dynamic programming algorithm through state to design,and per-formed the second and the third algorithm. The designed state compressed dynamic programming algorithm realized a fast solution for LCIS. According to analyze the time and space complexity of the three algorithms,presented a fast algorithm for delivering a longest com-mon increasing subsequence in O( mn) time and O( m) or O( n) space finally.

相似文献/References:

[1]刘玉荣,李涛. 基于多态并行处理器的生物计算并行实现[J].计算机技术与发展,2014,24(08):55.
 LIU Yu-rong,LI Tao. Implementation of Parallel Biological Computing Based on Polymorphous Parallel Processor[J].,2014,24(05):55.

更新日期/Last Update: 1900-01-01