[1]汪旗,贾兆红.基于多示例学习的图像分类算法[J].计算机技术与发展,2014,24(04):88-91.
 WANG Qi[],JIA Zhao-hong[].Image Categorization by Multi-instance Learning[J].,2014,24(04):88-91.
点击复制

基于多示例学习的图像分类算法()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
24
期数:
2014年04期
页码:
88-91
栏目:
智能、算法、系统工程
出版日期:
2014-04-30

文章信息/Info

Title:
Image Categorization by Multi-instance Learning
文章编号:
1673-629X(2014)04-0088-04
作者:
汪旗1贾兆红2
1.安徽大学 计算机科学与技术学院;2.安徽大学 计算机智能与信号处理教育部重点实验室
Author(s):
WANG Qi[1]JIA Zhao-hong[2]
关键词:
多示例学习多样性密度直推式支持向量机图像分类
Keywords:
multi-instance learning diverse densitytransductive support vector machineimage categorization
分类号:
TP301.6
文献标志码:
A
摘要:
基于内容的图像分类计数通常基于图像的单一特征进行处理,而图像中包含的内容不止一个,单一的特征不足以充分描述图像,多实例学习方法由于其特殊性可以很好地解决这个难题。文中针对基于多示例学习的图像分类问题提出了一种新的多示例学习算法DD-TSVM。该方法以图像作为包,图像中的区域作为包中示例。算法首先采用多样性密度算法寻找示例集的局部最大值以构建投影空间并将包映射为投影空间中的一个点;然后利用直推式支持向量机作为学习算法训练学习得到分类器。该算法有效地利用了未标记样本,基于Corel图像数据库的实验结果表明,DD-TSVM具有良好的性能。
Abstract:
There have been great achievements in CBIC,and only the one single feature is generally used in the methods. Since there is more than one object in an image,it is not enough to use one feature to describe the image. The method of multi-instance learning can deal with the above problem. For the problem of multi-instance-based image categorization,a creative multi-instance learning algorithm named DD-TSVM has been proposed. This algorithm regards the image as a bag,and the region of image as an instance in the bag. First, a local maximum set has been found by diversity density algorithm to construct a projection space and transform each bag into a point in the projection space. Then,using transductive support vector machine is to get the classifier. The proposed algorithm effectively takes ad-vantage of the unlabelled samples. The experimental results on Corel dataset show that DD-TSVM has good performance.

相似文献/References:

[1]于 全,宋金玉,余晓晗.解决抽象标签的图像分类的多示例两阶段模型[J].计算机技术与发展,2022,32(06):68.[doi:10. 3969 / j. issn. 1673-629X. 2022. 06. 012]
 YU Quan,SONG Jin-yu,YU Xiao-han.Multi-instance Two-stage Model of Solving Image Classification Problem of Abstract Labels[J].,2022,32(04):68.[doi:10. 3969 / j. issn. 1673-629X. 2022. 06. 012]

更新日期/Last Update: 1900-01-01