[1]糜靖峰,李庆武,朱浩,等.一种改进的基于结构相似度的图像质量评价方法[J].计算机技术与发展,2014,24(03):67-70.
 MI Jing-feng[],LI Qing-wu[][],ZHU Hao[],et al.An Improved Image Quality Assessment Method Based on Structural Similarity[J].,2014,24(03):67-70.
点击复制

一种改进的基于结构相似度的图像质量评价方法()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
24
期数:
2014年03期
页码:
67-70
栏目:
智能、算法、系统工程
出版日期:
2014-03-31

文章信息/Info

Title:
An Improved Image Quality Assessment Method Based on Structural Similarity
文章编号:
1673-629X(2014)03-0067-04
作者:
糜靖峰1李庆武12朱浩1霍冠英12
1.河海大学 物联网工程学院;2.海洋与近海工程研究院
Author(s):
MI Jing-feng[1]LI Qing-wu[1][2]ZHU Hao[1]HUO Guan-ying[1][2]
关键词:
结构相似度失真图像直方图集中度直方图结构相似度人眼视觉系统
Keywords:
SSIMdistorted imagehistogram concentrationHSSIMhuman visual system
分类号:
TP301
文献标志码:
A
摘要:
基于结构相似度(SSIM)的图像质量评价方法简单高效,准确性较高,评价性能优于峰值信噪比(PNSR)和均方误差( MSE),但SSIM模型不能较好地评价严重失真和交叉失真类型的图像。文中提出了一种改进的基于结构相似度的图像质量评价方法( HSSIM),该方法将直方图信息作为图像的主要结构信息,根据人眼视觉特性,利用直方图集中度来表示图像模糊度,最终计算得到图像的结构相似度值。实验结果表明,HSSIM比SSIM模型更符合人眼视觉系统特性,能更好地评价失真图像的质量。
Abstract:
SSIM is an image quality assessment algorithm with the advantage of simplicity,high efficiency and better consistence. Its eval-uation of performance is better than PNSR and MSE,however,it often fails when assessing badly distorted or cross distorted images. In this paper,an improved image quality assessment algorithm based on structural similarity ( HSSIM) is proposed,which takes the histo-gram concentration as the main structural information of an image,according to the human visual characteristics,using histogram concen-tration to calculate the fuzzy degree of the image,obtaining the structure similarity value of the image finally. Experimental results show that,compared with the SSIM model,the proposed HSSIM model is more consistent with human visual system and can assess the quality of fault images more precisely.

相似文献/References:

[1]安军,周宁宁. 一种基于视觉注意模型的SSIM改进方法[J].计算机技术与发展,2015,25(01):226.
 AN Jun,ZHOU Ning-ning. An Improved Method of SSIM Based on Visual Attention Model[J].,2015,25(03):226.
[2]谢立志,李玉惠,李勃. 一种基于视觉特性加权的图像质量评价方法[J].计算机技术与发展,2016,26(08):177.
 XIE Li-zhi,LI Yu-hui,LI Bo. An Image Quality Assessment Method Based on Visual Features Weighting[J].,2016,26(03):177.
[3]陈聪梅,都政,井革新,等. 超级计算机的图像结构相似度并行处理方法[J].计算机技术与发展,2017,27(09):22.
 CHEN Cong-mei,DU Zheng,JING Ge-xin,et al. Research on Image SSIM Paralleling Algorithm with Super Computer[J].,2017,27(03):22.

更新日期/Last Update: 1900-01-01