[1]赵海峰,于雪敏,邹际祥,等.基于L1范数主成分分析的颅脑图像恢复[J].计算机技术与发展,2014,24(01):231-234.
 ZHAO Hai-feng[],YU Xue-min[],ZOU Ji-xiang[],et al.Cerebral Image Recovery Based on L1-norm Principal Component Analysis[J].,2014,24(01):231-234.
点击复制

基于L1范数主成分分析的颅脑图像恢复()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
24
期数:
2014年01期
页码:
231-234
栏目:
应用开发研究
出版日期:
2014-01-31

文章信息/Info

Title:
Cerebral Image Recovery Based on L1-norm Principal Component Analysis
文章编号:
1673-629X(2014)01-0231-04
作者:
赵海峰1于雪敏2邹际祥2孙登第1
[1]安徽大学 计算机科学与技术学院;[2]安徽省工业图像处理与分析重点实验室
Author(s):
ZHAO Hai-feng[1]YU Xue-min[2]ZOU Ji-xiang[2]SUN Deng-di[1]
关键词:
脑图像恢复主成分分析L1范数稀疏表示
Keywords:
cerebral images recoveryprincipal component analysisL1-normsparse representation
分类号:
TP391.4
文献标志码:
A
摘要:
医学颅脑图像处理已成为脑部疾病诊断的重要途径,为去除颅脑图像的噪声和异物遮挡而又不损失正常组织信息,提出了一种基于L1范数鲁棒主成分分析降维的颅脑图像恢复方法。首先用L1范数代替传统主成分分析中的L2范数,构造对噪声更加鲁棒的L1范数主成分分析;然后对其代价函数进行交替凸规划算法计算图像降维后的特征数据与投影矩阵;最后利用线性变换得到恢复后的医学颅脑图像。与传统图像压缩与恢复方法不同,该方法利用了L1范数的噪声鲁棒性,通过降维的方法来实现颅脑图像的恢复,同时实现去噪和异常检测的功能。在真实颅脑图像库中进行的比较实验证明了该方法对于颅脑图像恢复的有效性。
Abstract:
As medical cerebral images have become an effective way of brain disease diagnosis,an efficient medical cerebral images recov-ery method based on L1 norm robust PCA dimensionality reduction is proposed to achieve denoising and anomaly detection with no loss of normal tissue information. First the L1 norm principal component analysis is constructed using L1 norm which is more robust to noise while in traditional principal component analysis it uses L2 norm. Then the characteristic data and the projection matrix are gotten by the alternate convex programming algorithm of the cost function. Finally,medical cerebral images after recovery are obtained by the linear transformation. Different from the traditional image compression and recovery method,the proposed method makes use of the robustness of the L1 norm. It realizes medical brain images recovery by dimension reduction,at the same time achieves denoising and anomaly detec-tion. The experimental results compared with the standard PCA algorithm in the real cerebral image database also prove the effectiveness of the proposed method for cerebral images recovery.

相似文献/References:

[1]夏玫 陈立潮 王新波.一种提高BP神经网络泛化能力的改进算法[J].计算机技术与发展,2009,(09):62.
 XIA Mei,CHEN Li-chao,WANG Xin-bo.A Modified Algorithm to Improve Generalization Ability of BP Neural Network[J].,2009,(01):62.
[2]宋世刚 粘永健 李纲.面向目标检测的高光谱图像压缩技术[J].计算机技术与发展,2009,(11):1.
 SONG Shi-gang,NIAN Yong-jian,LI Gang.Hyperspectral Image Compression Employing Target Detection[J].,2009,(01):1.
[3]张瑞霞 王勇.融合PCA和LDA的入侵检测算法[J].计算机技术与发展,2009,(11):132.
 ZHANG Rui-xia,WANG Yong.Fusion of PCA and LDA for Intrusion Detection[J].,2009,(01):132.
[4]俞小娟 胡金柱 李琼 周毕吉.用主成分分析法研究短语字段的判别因素[J].计算机技术与发展,2008,(10):116.
 YU Xiao-juan,HU Jin-zhu,LI Qiong,et al.Studying Factors of Judging Phrase Fields by Method of Principal Component Analysis[J].,2008,(01):116.
[5]刘树利 胡茂林.基于不同视角的人脸模型识别方法[J].计算机技术与发展,2006,(06):213.
 LIU Shu-li,HU Mao-lin.Recognition of Human Face in Different Pose[J].,2006,(01):213.
[6]王辉.主成分分析及支持向量机在人脸识别中的应用[J].计算机技术与发展,2006,(08):24.
 WANG Hui.Application in Human Face Recognition Based on Principal Component Analysis and Support Vector Machine[J].,2006,(01):24.
[7]张靖 葛玮 郝克刚.软件度量中主成分分析方法的研究[J].计算机技术与发展,2006,(12):144.
 ZHANG Jing,GE Wei,HAO Ke-gang.Research of Principal Component Analysis in Software Metrics[J].,2006,(01):144.
[8]职为梅 范明.样本大小对稀有类分类的影响[J].计算机技术与发展,2011,(05):9.
 ZHI Wei-mei,FAN Ming.Impact of Sample Size for Rare-Class Classification[J].,2011,(01):9.
[9]邓炳荣 伍世元 武琳 邵雅雯 李江勇.一种基于计算机嗅觉的卷烟等级识别方法[J].计算机技术与发展,2011,(11):177.
 DENG Bing-rong,WU Shi-yuan,WU Lin,et al.Application of Electronic Nose in Discrimination of Different Levels Cigarette[J].,2011,(01):177.
[10]杨晓斌 周宁宁 杨婷婷.基于统计处理图像放大方法在人脸识别中应用[J].计算机技术与发展,2011,(12):55.
 YANG Xiao-bin,ZHOU Ning-ning,YANG Ting-ting.Application of an Image Magnification Method Based on Statistical Processing in Face Recognition[J].,2011,(01):55.

更新日期/Last Update: 1900-01-01