[1]李丽侦,姜麟,钱浩,等.基于BP神经网络的压缩空气用能预测模型研究[J].计算机技术与发展,2014,24(01):216-219.
 LI Li-zhen,JIANG Lin,QIAN Hao,et al.Research on Compressed Air Prediction Model Based on BP Neural Network[J].,2014,24(01):216-219.
点击复制

基于BP神经网络的压缩空气用能预测模型研究
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
24
期数:
2014年01期
页码:
216-219
栏目:
应用开发研究
出版日期:
2014-01-31

文章信息/Info

Title:
Research on Compressed Air Prediction Model Based on BP Neural Network
文章编号:
1673-629X(2014)01-0216-04
作者:
李丽侦姜麟钱浩光文华
昆明理工大学 理学院
Author(s):
LI Li-zhenJIANG LinQIAN HaoGUANG Wen-hua
关键词:
BP神经网络压缩空气预测
Keywords:
BP neural network compressed airprediction
分类号:
TK01+2
文献标志码:
A
摘要:
文中根据BP神经网络对复杂问题所具有的预测能力,选取某企业压缩空气用能数据作为预测评判指标,建立了用于压缩空气用能预测的BP神经网络模型,并应用于实际问题预测。然而,最初预测结果在几个时刻点出现异常,在此文中针对记录数据可能出现问题的各种原因,再次利用局部预测对原始数据做出修正,最后预测结果已基本符合。实例表明:用BP神经网络模型进行压缩空气用能预测是可行和有效的。
Abstract:
In this paper,based on the BP neural network has the ability to predict about complex issues,the data of some enterprise com-pressed air is chosen as the indexes of criterion,a new model using BP neural network is proposed to predict the application of some en-terprise compressed air. However,in the first time the predicted results of some points are abnormal,according to the recorded data may be various reasons for the problems,use local forecast to make corrections on the original data,finally basically conform to the forecast re-sults. The results show that it is feasible and valid to use BP neural network for compressed air prediction.

相似文献/References:

[1]王菲露 宋杰 宋杨.BP神经网络在蛋白质二级结构预测中的应用[J].计算机技术与发展,2009,(05):217.
 WANG Fei-lu,SONG Jie,SONG Yang.Application of BP Neural Network in Protein Secondary Structure Prediction[J].,2009,(01):217.
[2]李秉 王凤山 李晓军.一种弹炮结合武器系统作战效能评估方法[J].计算机技术与发展,2009,(06):217.
 LI Bing,WANG Feng-shan,LI Xiao-jun.An Evaluation Method of Operational Effectiveness of Anti - Aircraft Gun Missile Weapon System[J].,2009,(01):217.
[3]贾其燕 王友仁 崔江.一种基于遗传算法的动态电流测试生成方法[J].计算机技术与发展,2009,(06):225.
 JIA Qi-yan,WANG You-ren,CUI Jiang.A Dynamic Current Test Generation Method Based on Genetic Algorithm[J].,2009,(01):225.
[4]王宁.一种基于BP神经网络的即时在线推荐系统[J].计算机技术与发展,2009,(07):230.
 WANG Ning.An Online Recommendation System Based on BP Network[J].,2009,(01):230.
[5]钟以维 徐应涛 张莹.用填充函数法改进的人脸比对算法[J].计算机技术与发展,2009,(08):78.
 ZHONG Yi-wei,XU Ying-tao,ZHANG Ying.Face Comparison Algorithm Based on Filled Function Method[J].,2009,(01):78.
[6]夏玫 陈立潮 王新波.一种提高BP神经网络泛化能力的改进算法[J].计算机技术与发展,2009,(09):62.
 XIA Mei,CHEN Li-chao,WANG Xin-bo.A Modified Algorithm to Improve Generalization Ability of BP Neural Network[J].,2009,(01):62.
[7]洪素惠 吴发成 米红.神经网络自适应PID在吹瓶机中的应用[J].计算机技术与发展,2009,(09):177.
 HONG Su-hui,WU Fa-cheng,MI Hong.Adaptive PID Controller Based on Neural Networks in Stretch Blow Molding[J].,2009,(01):177.
[8]陈虹 梁文彬 李宗宝 董航飞.基于机器人的神经网络预测控制算法[J].计算机技术与发展,2008,(08):65.
 CFIEN Hong,LIANG Wen-bin,LI Zong-bao,et al.A Neural Network Predictive Control Algorithm Based on Robot[J].,2008,(01):65.
[9]张龙 吴江 张德同.基于粗糙集和BP神经网络的天然裂缝识别[J].计算机技术与发展,2008,(11):41.
 ZHANG Long,WU Jiang,ZHANG De-tong.A Method for Natural Fractures Identification Based on Rough Sets Theory and BP Neural Network[J].,2008,(01):41.
[10]胡人君 李坤 吴小培.基于脑电信号的思维任务分类[J].计算机技术与发展,2007,(05):173.
 HU Ren-jun,LI Kun,WU Xiao-pei.Classification for Different Mental Tasks Based on EEG Signals[J].,2007,(01):173.

更新日期/Last Update: 1900-01-01