[1]郑权,刘循,魏海明.基于学习的霍夫变换线段组物体检测算法[J].计算机技术与发展,2014,24(01):26-30.
 ZHENG Quan,LIU Xun,WEI Hai-ming.An Object Detection Algorithm of Hough Transform Line Segmentation Groups Based on Learning[J].,2014,24(01):26-30.
点击复制

基于学习的霍夫变换线段组物体检测算法()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
24
期数:
2014年01期
页码:
26-30
栏目:
智能、算法、系统工程
出版日期:
2014-01-31

文章信息/Info

Title:
An Object Detection Algorithm of Hough Transform Line Segmentation Groups Based on Learning
文章编号:
1673-629X(2014)01-0026-05
作者:
郑权刘循魏海明
四川大学 计算机学院
Author(s):
ZHENG QuanLIU XunWEI Hai-ming
关键词:
物体检测霍夫变换局部特征图像匹配AdaBoost
Keywords:
object detectionHough transformpartial featureimage matchingAdaBoost
分类号:
TP301.6
文献标志码:
A
摘要:
针对单条霍夫变换线段特征算法的区分能力弱,不能有效处理部分匹配等问题,提出了霍夫变换线段组算法。首先通过文中算法提取霍夫变换线段特征构成码表,以此码表作为弱检测器的输入,再通过AdaBoost算法学习将弱检测器构造成强检测器,以提高检测的效率,最后在测试集上进行检测。为了计算两条霍夫变换线段之间的相似度,引入四元组空间内加权欧式距离,通过合理调整权重,能够有效地处理不可靠边缘检测问题。实验表明该算法能处理部分遮挡问题,具有很好的发展潜力。
Abstract:
Aiming at the problems of the weak distinguishing ability for the algorithm based on single Hough Transform Line Segment ( HTLS) feature,which cannot effectively deal with partial matching,an algorithm of the HTLS groups is proposed. Firstly in this paper, the algorithm extracts the Hough transform line segment feature to constitute the codebook as input of weak detector. Then through the study of AdaBoost algorithm make weak detectors structure into a strong detector,in order to improve the efficiency of detection. The fi-nal tests on the test set. To calculate the similarity between the two Hough transform line segment,a weighted Euclidean distance is intro-duced,through adjusting the weights,can effectively deal with unreliable edge detection problem. The experiment shows that the algorithm can deal with the partial sheltering problem,has a very good development potential.

相似文献/References:

[1]陈银平,涂碧海,张毅,等.改进型LOG算子在偏振片绝对角度中的应用[J].计算机技术与发展,2014,24(05):164.
 CHEN Yin-ping[],TU Bi-hai[],ZHANG Yi[],et al.Application of Improved LOG Operator in Absolute Angle of Polarizer[J].,2014,24(01):164.
[2]艾玲梅,叶雪娜.基于循环卷积神经网络的目标检测与分类[J].计算机技术与发展,2018,28(02):31.[doi:10.3969/j.issn.1673-629X.2018.02.008]
 AI Ling-mei,YE Xuena.Object Detection and Classification Based on Circular Convolutional Neural Network[J].,2018,28(01):31.[doi:10.3969/j.issn.1673-629X.2018.02.008]
[3]邵虹,王佳. 发票印刷体数字识别方法的研究[J].计算机技术与发展,2016,26(07):173.
 SHAO Hong,WANG Jia. Research on Recognition Method on Invoice Printing Number[J].,2016,26(01):173.
[4]穆珺[],晏峻峰[],彭清华[],等. 基于霍夫变换的可见光虹膜图像定位[J].计算机技术与发展,2017,27(05):40.
 MU Jun[],YAN Jun-feng[],PENG Qing-hua[],et al. Iris Localization for Visible-light Images Based on Hough Transform[J].,2017,27(01):40.
[5]顾绍通. 直线提取的预处理研究[J].计算机技术与发展,2017,27(09):40.
 GU Shao-tong. Investigation on Preprocessing of Line Extraction[J].,2017,27(01):40.
[6]王 颖,王鹏飞,杨余旺.基于图像分割的目标尺寸特征测量[J].计算机技术与发展,2018,28(02):191.[doi:10.3969/j.issn.1673-629X.2018.02.041]
 WANG Ying,WANG Pengfei,YANG Yuwang.Object Dimension Feature Measurement Based on Image Segmentation[J].,2018,28(01):191.[doi:10.3969/j.issn.1673-629X.2018.02.041]
[7]徐鹏,曾卫明,石玉虎,等.一种指针式油位计读数识别算法[J].计算机技术与发展,2018,28(09):189.[doi:10.3969/ j. issn.1673-629X.2018.09.039]
 XU Peng,ZENG Wei-ming,SHI Yu-hu,et al.A Reading Recognition Algorithm of Pointer Type Oil-level Meter[J].,2018,28(01):189.[doi:10.3969/ j. issn.1673-629X.2018.09.039]
[8]操昊鹏,曾卫明,石玉虎,等.基于 Hough 变换和总体最小二乘法的电力线检测[J].计算机技术与发展,2018,28(10):164.[doi:10.3969/ j. issn.1673-629X.2018.10.034]
 CAO Hao-peng,ZENG Wei-ming,SHI Yu-hu,et al.Power Line Detection Based on Hough Transform and Total Least Squares Method[J].,2018,28(01):164.[doi:10.3969/ j. issn.1673-629X.2018.10.034]
[9]汪 ?涛,成孝刚,李德志,等.基于霍夫变换与角点检测的叶脉特征提取算法[J].计算机技术与发展,2019,29(11):159.[doi:10. 3969 / j. issn. 1673-629X. 2019. 11. 032]
 WANG Tao,CHENG Xiao-gang,LI De-zhi,et al.A Feature Extraction Algorithm for Leaf Vein Based on Hough Transform and Corner Detection[J].,2019,29(01):159.[doi:10. 3969 / j. issn. 1673-629X. 2019. 11. 032]
[10]汤斯鹏,池鸿源,张培炜,等.深度学习识别光网络单元故障的设计与应用[J].计算机技术与发展,2020,30(05):211.[doi:10. 3969 / j. issn. 1673-629X. 2020. 05. 040]
 TANG Si-peng,CHI Hong-yuan,ZHANG Pei-wei,et al.Design and Application of Identifying Malfunctions in Optical Network Units Based on Deep Learning[J].,2020,30(01):211.[doi:10. 3969 / j. issn. 1673-629X. 2020. 05. 040]

更新日期/Last Update: 1900-01-01