[1]吕婉琪,钟诚,唐印浒,等.Hadoop分布式架构下大数据集的并行挖掘[J].计算机技术与发展,2014,24(01):22-25.
 L Wan-qi,ZHONG Cheng,TANG Yin-hu,et al.Parallel Mining of Large Dataset in Hadoop Distributed Computing Framework[J].,2014,24(01):22-25.
点击复制

Hadoop分布式架构下大数据集的并行挖掘()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
24
期数:
2014年01期
页码:
22-25
栏目:
智能、算法、系统工程
出版日期:
2014-01-31

文章信息/Info

Title:
Parallel Mining of Large Dataset in Hadoop Distributed Computing Framework
文章编号:
1673-629X(2014)01-0022-04
作者:
吕婉琪钟诚唐印浒陈志朕
广西大学 计算机与电子信息学院
Author(s):
L Wan-qiZHONG ChengTANG Yin-huCHEN Zhi-zhen
关键词:
数据挖掘大数据集并行算法Hadoop
Keywords:
data mininglarge datasetparallel algorithm Hadoop
分类号:
TP311.133.2;TP338.6
文献标志码:
A
摘要:
基于Hadoop分布式计算平台,给出一种适用于大数据集的并行挖掘算法。该算法对非结构化的原始大数据集以及中间结果文件进行垂直划分以确保能够获得完整的频繁项集,将各个垂直分块数据分配给不同的Hadoop计算节点进行处理,以减少各个计算节点的存储数据,进而减少各个计算节点执行交集操作的次数,提高并行挖掘效率。实验结果表明,给出的并行挖掘算法解决了大数据集挖掘过程中产生的大量数据通信、中间数据以及执行大量交集操作的问题,算法高效、可扩展。
Abstract:
Based on Hadoop distributed computing framework,propose a parallel algorithm for mining the large dataset. The presented al-gorithm divides the original large non-structured dataset and large middle result files into several smaller-scale data blocks by vertical partitioning pattern in order to ensure the completeness of the frequent item set. The algorithm can reduce the size of the data to be stored in each computing node and decrease the execution times that each computing node calculates the intersection operations by distributing the data blocks to the computing nodes to parallel mining in Hadoop distributed computing environment,and it can improve the efficiency of parallel mining. The experimental results show that the presented parallel mining algorithm can solve the problem that the mining large dataset will generate large amount of data communication and large number of operations for calculating intersection,and it is efficient and scalable.

相似文献/References:

[1]项响琴 汪彩梅.基于聚类高维空间算法的离群数据挖掘技术研究[J].计算机技术与发展,2010,(01):120.
 XIANG Xiang-qin,WANG Cai-mei.Study of Outlier Data Mining Based on CLIQUE Algorithm[J].,2010,(01):120.
[2]李雷 丁亚丽 罗红旗.基于规则约束制导的入侵检测研究[J].计算机技术与发展,2010,(03):143.
 LI Lei,DING Ya-li,LUO Hong-qi.Intrusion Detection Technology Research Based on Homing - Constraint Rule[J].,2010,(01):143.
[3]吉同路 柏永飞 王立松.住宅与房地产电子政务中数据挖掘的应用研究[J].计算机技术与发展,2010,(01):235.
 JI Tong-lu,BAI Yong-fei,WANG Li-song.Study and Application of Data Mining in E-government of House and Real Estate Industry[J].,2010,(01):235.
[4]杨静 张楠男 李建 刘延明 梁美红.决策树算法的研究与应用[J].计算机技术与发展,2010,(02):114.
 YANG Jing,ZHANG Nan-nan,LI Jian,et al.Research and Application of Decision Tree Algorithm[J].,2010,(01):114.
[5]赵裕啸 倪志伟 王园园 伍章俊.SQL Server 2005数据挖掘技术在证券客户忠诚度的应用[J].计算机技术与发展,2010,(02):229.
 ZHAO Yu-xiao,NI Zhi-wei,WANG Yuan-yuan,et al.Application of Data Mining Technology of SQL Server 2005 in Customer Loyalty Model in Securities Industry[J].,2010,(01):229.
[6]张笑达 徐立臻.一种改进的基于矩阵的频繁项集挖掘算法[J].计算机技术与发展,2010,(04):93.
 ZHANG Xiao-da,XU Li-zhen.An Advanced Frequent Itemsets Mining Algorithm Based on Matrix[J].,2010,(01):93.
[7]王爱平 王占凤 陶嗣干 燕飞飞.数据挖掘中常用关联规则挖掘算法[J].计算机技术与发展,2010,(04):105.
 WANG Ai-ping,WANG Zhan-feng,TAO Si-gan,et al.Common Algorithms of Association Rules Mining in Data Mining[J].,2010,(01):105.
[8]张广路 雷景生 吴兴惠.一种改进的Apriori关联规则挖掘算法(英文)[J].计算机技术与发展,2010,(06):84.
 ZHANG Guang-lu,LEI Jing-sheng,WU Xing-hui.An Improved Apriori Algorithm for Mining Association Rules[J].,2010,(01):84.
[9]吴楠 胡学钢.基于聚类分区的序列模式挖掘算法研究[J].计算机技术与发展,2010,(06):109.
 WU Nan,HU Xue-gang.Research on Clustering Partition-Based Approach of Sequential Pattern Mining[J].,2010,(01):109.
[10]吴青 傅秀芬.水平分布数据库的正负关联规则挖掘[J].计算机技术与发展,2010,(06):113.
 WU Qing,FU Xiu-fen.Positive and Negative Association Rules Mining on Horizontally Partitioned Database[J].,2010,(01):113.

更新日期/Last Update: 1900-01-01