[1]王玉军.一种相关快速软阈值坐标下降算法[J].计算机技术与发展,2013,(12):55-58.
 WANG Yu-jun.A Relative Fast Soft-thresholding Coordinate Descent Algorithm[J].,2013,(12):55-58.
点击复制

一种相关快速软阈值坐标下降算法()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2013年12期
页码:
55-58
栏目:
智能、算法、系统工程
出版日期:
1900-01-01

文章信息/Info

Title:
A Relative Fast Soft-thresholding Coordinate Descent Algorithm
文章编号:
1673-629X(2013)12-0055-04
作者:
王玉军
中国人民解放军陆军军官学院
Author(s):
WANG Yu-jun
关键词:
软阈值缩减迭代机器学习特征向量独立同分布坐标下降
Keywords:
iterative shrinkage-thresholdingmachine learningfeature vectorindependent and identically distributedcoordinate descent
文献标志码:
A
摘要:
软阈值缩减迭代算法( ISTA)以其简单的操作流程成为了机器学习流行的优化算法,但是收敛速度比较慢,仅为o(1k )。快速软阈值缩减迭代算法( FISTA)通过加速技巧将收敛速度提高了一个数量级,达到了o(1k2)。然而,FISTA将特征向量每一维看成是独立同分布的,丢失了各维之间的相关性,会导致准确率下降和额外的时间开销。为了弥补上述的不足,文中提出了一种相关快速软阈值坐标下降算法( RFTCD)。通过大规模数据库实验证实了RFTCD的正确性和有效性
Abstract:
Although iterative shrinkage-thresholding algorithm ( ISTA) becomes popular optimization algorithms of machine learning be-cause of its simple operational processes,but the convergence rate is slow,only o ( 1 )k . Convergence rate of fast iterative shrinkage-thresholding algorithm ( FISTA) by accelerating skills can improve by an order of magnitude,reaching o 1k( 2 ) . However each eigenvec-tors dimension is seen by FISTA as independent and identically distributed,which will loss the correlation between each dimension and lead to the decline in accuracy and time overhead. In order to circumvent these drawbacks,present a relative fast soft-thresholding coordi-nate descent algorithm. Extensive experiments on large-scale real database verify the proposed algorithm is correct and effective

相似文献/References:

[1]陈全 赵文辉 李洁 江雨燕.选择性集成学习算法的研究[J].计算机技术与发展,2010,(02):87.
 CHEN Quan,ZHAO Wen-hui,LI Jie,et al.Research of Selective Ensemble Learning Algorithm[J].,2010,(12):87.
[2]黄秀丽 王蔚.SVM在非平衡数据集中的应用[J].计算机技术与发展,2009,(06):190.
 HUANG Xiu-li,WANG Wei.Application of SVM in Imbalances Dataset[J].,2009,(12):190.
[3]鲁晓南 接标.一种基于个性化邮件特征的反垃圾邮件系统[J].计算机技术与发展,2009,(08):155.
 LU Xiao-nan,JIE Biao.An Individual Anti- Spam Technology[J].,2009,(12):155.
[4]张苗 张德贤.多类支持向量机文本分类方法[J].计算机技术与发展,2008,(03):139.
 ZHANG Miao,ZHANG De-xian.Research on Text Categorization Based on. M- SVMs[J].,2008,(12):139.
[5]汤萍萍 王红兵.基于强化学习的Web服务组合[J].计算机技术与发展,2008,(03):142.
 TANG Ping-ping,WANG Hong-bing.Web Service Composition Based on Reinforcement -Learning[J].,2008,(12):142.
[6]杨雪洁 赵姝 张燕平.基于商空间理论的冬小麦产量预测和分析[J].计算机技术与发展,2008,(03):249.
 YANG Xue-jie,ZHAO Shu,ZHANG Yan-ping.Analysis on Winter Wheat Yield Based on Quotient Space Theory[J].,2008,(12):249.
[7]汤伟 程家兴 纪霞.一种基于概率推理的邮件过滤系统的研究与设计[J].计算机技术与发展,2008,(08):76.
 TANG Wei,CHENG Jia-xing,JI Xia.Research and Design of a Spam Filtering System Based on Probability Inference[J].,2008,(12):76.
[8]孙海虹 丁华福.基于模糊粗糙集的Web文本分类[J].计算机技术与发展,2010,(07):21.
 SUN Hai-hong,DING Hua-fu.Web Document Classification Based on Fuzzy-Rough Set[J].,2010,(12):21.
[9]汤伟 程家兴 纪霞.统计学理论在邮件分类中的应用研究[J].计算机技术与发展,2008,(12):231.
 TANG Wei,CHENG Jia-xing,JI Xia.Research and Design of a Spam Filtering System Based on Statistical Learning Theory[J].,2008,(12):231.
[10]张高胤 谭成翔 汪海航.基于K-近邻算法的网页自动分类系统的研究及实现[J].计算机技术与发展,2007,(01):21.
 ZHANG Gao-yin,TAN Cheng-xiang,WANG Hai-hang.Design and Implementation of Web Page Automation Classification System Based on K- Nearest Neighbor Algorithm[J].,2007,(12):21.

更新日期/Last Update: 1900-01-01