[1]张晓萍,朱玉全,陈耿.量化关联规则在高校就业信息数据中的应用[J].计算机技术与发展,2013,(11):199-202.
 ZHANG Xiao-ping[],ZHU Yu-quan[],CHEN Geng[].Application of Quantitative Association Rules in College Employment Information Data[J].,2013,(11):199-202.
点击复制

量化关联规则在高校就业信息数据中的应用()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2013年11期
页码:
199-202
栏目:
应用开发研究
出版日期:
1900-01-01

文章信息/Info

Title:
Application of Quantitative Association Rules in College Employment Information Data
文章编号:
1673-629X(2013)11-0199-04
作者:
张晓萍1朱玉全1陈耿2
[1]江苏大学 计算机科学与通信工程学院;[2]南京审计学院 信息科学学院
Author(s):
ZHANG Xiao-ping[1]ZHU Yu-quan[1]CHEN Geng[2]
关键词:
数据挖掘量化关联规则k-means聚类算法就业信息
Keywords:
data miningquantitative association rulesk-means clustering algorithmemployment information
文献标志码:
A
摘要:
针对就业信息数据中存在着大量的量化属性和分类属性等现象,提出了一种基于k-means的量化关联规则挖掘方法。该方法利用聚类算法k-means对量化属性进行合理分区,将量化属性转化为布尔型;利用改进的布尔关联规则方法对此进行关联规则挖掘,找出学生的受教育属性和就业属性之间的关联性;对挖掘出的规则进行分析和运用。就业信息数据实验证明,文中所提方法对就业信息进行挖掘是有效的、可行的
Abstract:
In view of the phenomenon such as a lot of quantitative attributes and categorical attributes among the employment information data,proposed an algorithm for mining quantitative association rules based on k-means. This method uses k-means clustering algorithm to partition the quantitative attributes reasonably and convert quantitative attributes to Boolean type;use the improved Boolean association rules method to conduct mining association rules on this to find the correlation between student's educational attributes and employment attributes;analyze and apply the rules. Employment information data experimental results show that the presented method is effective and feasible in mining the employment information data

相似文献/References:

[1]项响琴 汪彩梅.基于聚类高维空间算法的离群数据挖掘技术研究[J].计算机技术与发展,2010,(01):120.
 XIANG Xiang-qin,WANG Cai-mei.Study of Outlier Data Mining Based on CLIQUE Algorithm[J].,2010,(11):120.
[2]李雷 丁亚丽 罗红旗.基于规则约束制导的入侵检测研究[J].计算机技术与发展,2010,(03):143.
 LI Lei,DING Ya-li,LUO Hong-qi.Intrusion Detection Technology Research Based on Homing - Constraint Rule[J].,2010,(11):143.
[3]吉同路 柏永飞 王立松.住宅与房地产电子政务中数据挖掘的应用研究[J].计算机技术与发展,2010,(01):235.
 JI Tong-lu,BAI Yong-fei,WANG Li-song.Study and Application of Data Mining in E-government of House and Real Estate Industry[J].,2010,(11):235.
[4]杨静 张楠男 李建 刘延明 梁美红.决策树算法的研究与应用[J].计算机技术与发展,2010,(02):114.
 YANG Jing,ZHANG Nan-nan,LI Jian,et al.Research and Application of Decision Tree Algorithm[J].,2010,(11):114.
[5]赵裕啸 倪志伟 王园园 伍章俊.SQL Server 2005数据挖掘技术在证券客户忠诚度的应用[J].计算机技术与发展,2010,(02):229.
 ZHAO Yu-xiao,NI Zhi-wei,WANG Yuan-yuan,et al.Application of Data Mining Technology of SQL Server 2005 in Customer Loyalty Model in Securities Industry[J].,2010,(11):229.
[6]张笑达 徐立臻.一种改进的基于矩阵的频繁项集挖掘算法[J].计算机技术与发展,2010,(04):93.
 ZHANG Xiao-da,XU Li-zhen.An Advanced Frequent Itemsets Mining Algorithm Based on Matrix[J].,2010,(11):93.
[7]王爱平 王占凤 陶嗣干 燕飞飞.数据挖掘中常用关联规则挖掘算法[J].计算机技术与发展,2010,(04):105.
 WANG Ai-ping,WANG Zhan-feng,TAO Si-gan,et al.Common Algorithms of Association Rules Mining in Data Mining[J].,2010,(11):105.
[8]张广路 雷景生 吴兴惠.一种改进的Apriori关联规则挖掘算法(英文)[J].计算机技术与发展,2010,(06):84.
 ZHANG Guang-lu,LEI Jing-sheng,WU Xing-hui.An Improved Apriori Algorithm for Mining Association Rules[J].,2010,(11):84.
[9]吴楠 胡学钢.基于聚类分区的序列模式挖掘算法研究[J].计算机技术与发展,2010,(06):109.
 WU Nan,HU Xue-gang.Research on Clustering Partition-Based Approach of Sequential Pattern Mining[J].,2010,(11):109.
[10]吴青 傅秀芬.水平分布数据库的正负关联规则挖掘[J].计算机技术与发展,2010,(06):113.
 WU Qing,FU Xiu-fen.Positive and Negative Association Rules Mining on Horizontally Partitioned Database[J].,2010,(11):113.

更新日期/Last Update: 1900-01-01