[1]尚福华,于志东,曹茂俊.前馈神经网络在水泥胶结识别中的应用[J].计算机技术与发展,2013,(09):223-226.
 SHANG Fu-hua,YU Zhi-dong,CAO Mao-jun.Application of Feedforward Neural Network in Cement Bond Identification[J].,2013,(09):223-226.
点击复制

前馈神经网络在水泥胶结识别中的应用()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2013年09期
页码:
223-226
栏目:
应用开发研究
出版日期:
1900-01-01

文章信息/Info

Title:
Application of Feedforward Neural Network in Cement Bond Identification
文章编号:
1673-629X(2013)09-0223-04
作者:
尚福华于志东曹茂俊
东北石油大学 计算机与信息技术学院
Author(s):
SHANG Fu-huaYU Zhi-dongCAO Mao-jun
关键词:
前馈神经网络八扇区水泥胶结测井胶结质量
Keywords:
feedforward neural networkSBTcement quality
文献标志码:
A
摘要:
为了解决石油测井中水泥胶结质量识别误差较大的问题,采用八扇区水泥胶结测井仪进行声幅测量。仪器灵敏度变化以及泥浆对声信号的衰减所引起的误差可以综合利用首波幅度信息对其消除。通过对非线性连接权的神经网络方法的研究和阐述,克服了传统的BP学习算法过程中难以跳出局部极小值与收敛速度慢的缺点,使其具有3层BP网络的功能且提高了运行速度,优于统计识别方法。实验表明,前馈神经网络方法的应用可识别水泥胶结质量,识别正确率远高于相对幅度法,效果显著
Abstract:
In order to solve the problem of big unavoidable error in cement bond logof oil casing-well engineering,the eight segmented cement bond tool is adopted to measure sonic amplitude. Comprehensive utilization of the first wave of amplitude information eliminates the inevitable errors caused by the mud on the attenuation of the acoustic signal,as well as changes in instrument sensitivity. The method of artificial neural network ( ANN) with nonlinear connected weights superior to that of statistics theory is studied,which can replace three-layer error back-propagation ( BP) algorithm,so the implied-layer removed,the calculating simplified,and the operated speed in-creased. Actual application example shows that the method of ANN can identify cement quality,the identification accuracy rate is much better than that of amplitude-compare method,and the application effect is very notable

相似文献/References:

[1]成旭 赵学民.一种基于前馈网络的分组密码体制[J].计算机技术与发展,2007,(01):167.
 CHENG Xu,ZHAO Xue-min.A Block Cipher Based on Feed- Forward Neural Network[J].,2007,(09):167.
[2]张代远.新型样条权函数神经网络的云计算研究[J].计算机技术与发展,2013,(07):57.
 ZHANG Dai-yuan.Research on Cloud Computing for Neural Network of a New Kind of Spline Weight Functions[J].,2013,(09):57.
[3]胡亚兰,陈亮,余相,等.基于总体经验模态分解和CoDE-BP短期风速预测[J].计算机技术与发展,2019,29(02):195.[doi:10.3969/j.issn.1673-629X.2019.02.041]
 HU Yalan,CHEN Liang,YU Xiang,et al.Short-term Wind Speed Forecasting Based on Ensemble Empirical Mode Decomposition and CoDE-BP Method[J].,2019,29(09):195.[doi:10.3969/j.issn.1673-629X.2019.02.041]

更新日期/Last Update: 1900-01-01