[1]周西峰,林莹莹,郭前岗.基于粒子群算法的PID神经网络解耦控制[J].计算机技术与发展,2013,(09):158-161.
 ZHOU Xi-feng,LIN Ying-ying,GUO Qian-gang.PID Neural Network Decoupling Control Based on Particle Swarm Optimization[J].,2013,(09):158-161.
点击复制

基于粒子群算法的PID神经网络解耦控制()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2013年09期
页码:
158-161
栏目:
应用开发研究
出版日期:
1900-01-01

文章信息/Info

Title:
PID Neural Network Decoupling Control Based on Particle Swarm Optimization
文章编号:
1673-629X(2013)09-0158-04
作者:
周西峰林莹莹郭前岗
南京邮电大学 自动化学院
Author(s):
ZHOU Xi-fengLIN Ying-yingGUO Qian-gang
关键词:
粒子群算法PID控制解耦控制多变量系统
Keywords:
PSO algorithmPID controldecoupling controlmultivariable system
文献标志码:
A
摘要:
基于粒子群的优化算法具有对整个参数空间进行高效并行搜索的特点以及PID神经网络的自调节和自适应特性,设计了具有PID结构的多变量自适应神经网络控制器。该算法采用粒子群算法优化PID神经网络初始权值,并将优化后的最优初始权值控制非线性耦合系统。系统仿真结果表明,粒子群优化后的PID神经网络控制器具有逼近控制目标更快、响应时间较短的显著优点。该控制策略可在大范围内克服系统的非线性和强耦合问题,具有一定的理论研究价值和工程实用价值
Abstract:
The automatic control of such a system is a research focus in the process control area. A multivariable adaptive PID Artificial Neural Network ( ANN) controller was introduced,which was based on the characteristics of Particle Swarm Optimization ( PSO) algo-rithm searching the parameter space concurrently and efficiently,and the self-regulation and adaptability of PID artificial neuron net-works. Utilize the PSO to optimize the initial weight value of PID neural network,successfully achieve the control strategy of a nonlinear coupling system using the improved PID neural network with those obtained from the original PID neural network. The new control strate-gy could overcome nonlinear and strong coupling features of the system in a wide range and is expected to have certain theoretical and en-gineering application value

相似文献/References:

[1]张爱华 江中勤 张华.基于粒子群优化算法的分形图像压缩编码[J].计算机技术与发展,2010,(02):21.
 ZHANG Ai-hua,JIANG Zhong-qin,ZHANG Hua.Fractal Image Compression Coding Based on PSO[J].,2010,(09):21.
[2]唐俊.PSO算法原理及应用[J].计算机技术与发展,2010,(02):213.
 TANG Jun.Principle and Application of PSO Algorithm[J].,2010,(09):213.
[3]张捍东 廖天红 岑豫皖.用模拟退火思想的粒子群算法实现图像分割[J].计算机技术与发展,2010,(05):83.
 ZHANG Han-dong,LIAO Tian-hong,CEN Yu-wan.Image Segmentation Through Particle Swarm Optimization Based on Simulated Annealing[J].,2010,(09):83.
[4]廖锋 高兴宝.差分演化算法在约束优化问题中的应用[J].计算机技术与发展,2010,(05):187.
 LIAO Feng,GAO Xing-bao.Application of Differential Evolution Algorithms on Constraint Optimization Problems[J].,2010,(09):187.
[5]来磊 卢文科 邓开连.基于二维Tsallis交叉熵直线型图像阈值分割方法[J].计算机技术与发展,2010,(06):105.
 LAI Lei,LU Wen-ke,DENG Kai-lian.New Image Thresholding Segmentation Methods Based on Two-Dimensional Tsallis Cross-Entropy Liner-Type[J].,2010,(09):105.
[6]洪素惠 吴发成 米红.神经网络自适应PID在吹瓶机中的应用[J].计算机技术与发展,2009,(09):177.
 HONG Su-hui,WU Fa-cheng,MI Hong.Adaptive PID Controller Based on Neural Networks in Stretch Blow Molding[J].,2009,(09):177.
[7]邹毅 朱晓萍 王秀平.一种基于混沌优化的混合粒子群算法[J].计算机技术与发展,2009,(11):18.
 ZOU Yi,ZHU Xiao-ping,WANG Xiu-ping.A Hybrid PSO Algorithm Based on Chaos Optimization[J].,2009,(09):18.
[8]王为为 程家兴 贺晟.基于佳点集交叉的粒子群算法[J].计算机技术与发展,2009,(12):32.
 WANG Wei-wei,CHENG Jia-xing,HE Sheng.Particle Swarm Algorithm Based on Good Point Set Crossover[J].,2009,(09):32.
[9]贾瑞玉 黄义堂 邢猛.一种动态改变权值的简化粒子群算法[J].计算机技术与发展,2009,(02):137.
 JIA Rui-yu,HUANG Yi-tang,XING Meng.A Modified Simple Particle Swarm Optimization Using Dynamically Decreasing Inertia Weight[J].,2009,(09):137.
[10]卢珊萍 于盛林.基于粒子群算法的细胞神经网络模板参数设计[J].计算机技术与发展,2009,(04):83.
 LU Shan-ping,YU Sheng-lin.A Template Design Method for Cellular Neural Network Based on Particle Swarm Optimizer Algorithm[J].,2009,(09):83.

更新日期/Last Update: 1900-01-01