[1]李晓霞,陈强.本体推理在几何定理机器证明中的应用[J].计算机技术与发展,2013,(09):78-81.
 LI Xiao-xia,CHEN Qiang.Application of Ontology Reasoning in Mechanical Geometry Theorem Proving[J].,2013,(09):78-81.
点击复制

本体推理在几何定理机器证明中的应用()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2013年09期
页码:
78-81
栏目:
智能、算法、系统工程
出版日期:
1900-01-01

文章信息/Info

Title:
Application of Ontology Reasoning in Mechanical Geometry Theorem Proving
文章编号:
1673-629X(2013)09-0078-04
作者:
李晓霞陈强
广东第二师范学院 计算机科学系
Author(s):
LI Xiao-xiaCHEN Qiang
关键词:
定理机器证明本体模型规则推理领域属性
Keywords:
theorem mechanical provingontology modelrulesreasoningfield attribute
文献标志码:
A
摘要:
文中阐述了平面几何定理机器证明的基本原理及方法,针对几何定理机器证明过程中可读证明的产生,及推理信息快速增长的问题,提出了一种基于本体推理的几何定理机器证明方法。通过具体案例,描述了以Protégér软件为工具,基于WordNet重用的领域本体半自动构建方法,构建几何本体模型的过程,并结合Prolog规则进行双向推理。结果表明将本体引入几何定理机器证明是可行的,且本体推理脱离了代数形式,使得推理过程更接近自然语言的描述,同时推理效率更高
Abstract:
The principle and method of the plane geometry theorem machine proving are expounded in this paper. According to the prob-lem of readability and information rapid growth in geometry theorem proving,a proving method based on ontology reasoning is proposed. Through the concrete case, the process of constructing geometric ontology models are described, which are constructed by using the Protégé tool and the method of domain ontology semi-automatic construction based on WordNet reuse,then combine the Prolog rules to reasoning. The results show the geometry theorem proving based on ontology reasoning is feasible,and the ontology reasoning is divorced from the algebraic form,which makes the reasoning process are more closer to natural language,and the efficiency more higher

相似文献/References:

[1]惠敏顺 朱国进.基于SOA的分布式程序设计竞赛系统的研究[J].计算机技术与发展,2008,(10):123.
 HUI Min-shun,ZHU Guo-jin.Research on Distributed System for Programming Contest Based on SOA[J].,2008,(09):123.
[2]黄卫东,吴美蓉,洪小娟. 基于本体的食品安全应急管理知识表示研究[J].计算机技术与发展,2015,25(03):223.
 HUANG Wei-dong,WU Mei-rong,HONG Xiao-juan. Research on Ontology-based Knowledge Representation of Food Safety Emergency Management[J].,2015,25(09):223.

更新日期/Last Update: 1900-01-01