[1]王健,韩志艳.鲁棒主元分析及在故障诊断中的应用[J].计算机技术与发展,2013,(06):79-81.
 WANG Jian[],HAN Zhi-yan[].Robust Principal Component Analysis and Its Application in Fault Diagnosis[J].,2013,(06):79-81.
点击复制

鲁棒主元分析及在故障诊断中的应用()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2013年06期
页码:
79-81
栏目:
智能、算法、系统工程
出版日期:
1900-01-01

文章信息/Info

Title:
Robust Principal Component Analysis and Its Application in Fault Diagnosis
文章编号:
1673-629X(2013)06-0079-03
作者:
王健1韩志艳2
[1]渤海大学 工学院;[2]东北大学 信息科学与工程学院
Author(s):
WANG Jian[1]HAN Zhi-yan[2]
关键词:
主成分分析流形学习故障诊断
Keywords:
principal component analysismanifold learningfault diagnosis
文献标志码:
A
摘要:
在故障诊断过程中,传统的主元分析(Principal Component Analysis,PCA)算法,假设建模使用的历史数据为正常模式下采集的纯净数据,而在工业现场这一假设难以满足.针对传统PCA算法的这一缺陷,文中提出一种鲁棒PCA算法.该算法利用流形学习的思想,通过构造数据间近邻图的方式,计算各数据点的能量密度函数,并以此为依据去除历史数据中混杂的噪声和故障数据,增强PCA算法的鲁棒性.同时在文中给出了鲁棒PCA算法在故障诊断中的应用步骤,并通过对Tennessee Eastman过程的仿真研究,验证了鲁棒PCA算法在故障诊断中的可行性和有效性

相似文献/References:

[1]夏玫 陈立潮 王新波.一种提高BP神经网络泛化能力的改进算法[J].计算机技术与发展,2009,(09):62.
 XIA Mei,CHEN Li-chao,WANG Xin-bo.A Modified Algorithm to Improve Generalization Ability of BP Neural Network[J].,2009,(06):62.
[2]宋世刚 粘永健 李纲.面向目标检测的高光谱图像压缩技术[J].计算机技术与发展,2009,(11):1.
 SONG Shi-gang,NIAN Yong-jian,LI Gang.Hyperspectral Image Compression Employing Target Detection[J].,2009,(06):1.
[3]张瑞霞 王勇.融合PCA和LDA的入侵检测算法[J].计算机技术与发展,2009,(11):132.
 ZHANG Rui-xia,WANG Yong.Fusion of PCA and LDA for Intrusion Detection[J].,2009,(06):132.
[4]俞小娟 胡金柱 李琼 周毕吉.用主成分分析法研究短语字段的判别因素[J].计算机技术与发展,2008,(10):116.
 YU Xiao-juan,HU Jin-zhu,LI Qiong,et al.Studying Factors of Judging Phrase Fields by Method of Principal Component Analysis[J].,2008,(06):116.
[5]刘树利 胡茂林.基于不同视角的人脸模型识别方法[J].计算机技术与发展,2006,(06):213.
 LIU Shu-li,HU Mao-lin.Recognition of Human Face in Different Pose[J].,2006,(06):213.
[6]王辉.主成分分析及支持向量机在人脸识别中的应用[J].计算机技术与发展,2006,(08):24.
 WANG Hui.Application in Human Face Recognition Based on Principal Component Analysis and Support Vector Machine[J].,2006,(06):24.
[7]张靖 葛玮 郝克刚.软件度量中主成分分析方法的研究[J].计算机技术与发展,2006,(12):144.
 ZHANG Jing,GE Wei,HAO Ke-gang.Research of Principal Component Analysis in Software Metrics[J].,2006,(06):144.
[8]职为梅 范明.样本大小对稀有类分类的影响[J].计算机技术与发展,2011,(05):9.
 ZHI Wei-mei,FAN Ming.Impact of Sample Size for Rare-Class Classification[J].,2011,(06):9.
[9]闫志敏 刘希玉.流形学习及其算法研究[J].计算机技术与发展,2011,(05):99.
 YAN Zhi-min,LIU Xi-yu.Manifold Learning and Research of Algorithm[J].,2011,(06):99.
[10]邓炳荣 伍世元 武琳 邵雅雯 李江勇.一种基于计算机嗅觉的卷烟等级识别方法[J].计算机技术与发展,2011,(11):177.
 DENG Bing-rong,WU Shi-yuan,WU Lin,et al.Application of Electronic Nose in Discrimination of Different Levels Cigarette[J].,2011,(06):177.

更新日期/Last Update: 1900-01-01