[1]周飞,罗杰.基于远缘杂交的精英进化算法[J].计算机技术与发展,2013,(02):93-96.
 ZHOU Fei,LUO Jie.Elite Evolutionary Algorithm Based on Distant Hybridization[J].,2013,(02):93-96.
点击复制

基于远缘杂交的精英进化算法()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2013年02期
页码:
93-96
栏目:
智能、算法、系统工程
出版日期:
1900-01-01

文章信息/Info

Title:
Elite Evolutionary Algorithm Based on Distant Hybridization
文章编号:
1673-629X(2013)02-0093-04
作者:
周飞罗杰
南京邮电大学 自动化学院
Author(s):
ZHOU FeiLUO Jie
关键词:
进化算法远缘杂交精英策略TSP
Keywords:
evolutionary algorithmdistant hybridizationelite strategyTSP
文献标志码:
A
摘要:
文中主要以提高进化算法求解TSP问题的效率为研究目标,借鉴人类社会进化中具有远缘杂交优势的理论和进化算法中的精英策略,提出一种基于远缘杂交的精英进化算法.该算法在初始阶段将种群分为精英种群和普通种群,对精英种群则不经过交叉直接进入下一代,对普通种群则基于远缘杂交原则进行交叉,并将子代与精英种群一同组成新子代.仿真实验证明算法能增强优秀个体遗传的机会,提高种群基因的多样性,在深度搜索和广度寻优之间取得了平衡.针对TSP实验结果表明,算法具有可靠的全局收敛性及较快的收敛速度
Abstract:
In this paper,the aim of the research is to improve the efficience of solving TSP with evolutionary algorithm. The elite evolu-tionary algorithm which is based on distant hybridization was proposed on the distant hybridization theory and elitist strategy. At the initial stage,the algorithm population is divided into elite populations which are directly into the next generation without crossover and general populations who deliver the offspring by crossover based on the principle of distant hybridization. And the total offspring is made by the elite population and the offspring which is delivered by general populations. The simulation results show that the opportunities for elite in-dividual genetic,and the population diversity of genetic was enhanced by the algorithm. And the balance between in the depth and breadth of the search optimizing was acquired. The TSP experimental results show that the algorithm has reliable global convergence and faster convergence rate

相似文献/References:

[1]樊玮 朱贺.软件结构化测试用例自动生成方法[J].计算机技术与发展,2010,(05):26.
 FAN Wei,ZHU He.Summary of Method for Software Structured Testing Case Automatic Generation[J].,2010,(02):26.
[2]廖锋 高兴宝.差分演化算法在约束优化问题中的应用[J].计算机技术与发展,2010,(05):187.
 LIAO Feng,GAO Xing-bao.Application of Differential Evolution Algorithms on Constraint Optimization Problems[J].,2010,(02):187.
[3]陈玲 严南南.基于多Agent和进化算法的作业线调度研究[J].计算机技术与发展,2009,(11):210.
 CHEN Ling,YAN Nan-nan.Crane Scheduling Research Based on Multi- Agent and Evolutionary Algorithms[J].,2009,(02):210.
[4]周国亮 刘希玉.一种基于进化算法的BP神经网络优化方法及应用[J].计算机技术与发展,2007,(08):58.
 ZHOU Guo-liang,LIU Xi-yu.A Method of BP NN Optimization Based on Evolution Algorithm and Its Application[J].,2007,(02):58.
[5]常新功 李宏.基于近似个体协同的进化子结构发现[J].计算机技术与发展,2010,(09):106.
 CHANG Xin-gong,LI Hong.Evolutionary Algorithm for Substructure Discovery Based on Approximate Individual Cooperation[J].,2010,(02):106.
[6]李杭涓,崔志华,谢丽萍.基于权重学习的高维多目标进化算法[J].计算机技术与发展,2021,31(01):18.[doi:10. 3969 / j. issn. 1673-629X. 2021. 01. 004]
 LI Hang-juan,CUI Zhi-hua,XIE Li-ping.Research on Multi-objective Evolution Algorithm Based on Weight Learning[J].,2021,31(02):18.[doi:10. 3969 / j. issn. 1673-629X. 2021. 01. 004]
[7]高智阔,陈未如,彭弗楠.基于网格投影的超多目标进化算法[J].计算机技术与发展,2023,33(05):22.[doi:10. 3969 / j. issn. 1673-629X. 2023. 05. 004]
 GAO Zhi-kuo,CHEN Wei-ru,PENG Fu-nan.Many-objective Evolutionary Algorithm Based on Grid Projection[J].,2023,33(02):22.[doi:10. 3969 / j. issn. 1673-629X. 2023. 05. 004]

更新日期/Last Update: 1900-01-01