[1]张奇 黄卫东.构建基于PSO—BP网络的电信客户信用度评估模型[J].计算机技术与发展,2012,(12):146-148.
 ZHANG Qi,HUANG Wei-dong.Construction of Credit Evaluation Model for Telecommunication Clients Based on PSO-BP Neural Network[J].,2012,(12):146-148.
点击复制

构建基于PSO—BP网络的电信客户信用度评估模型()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2012年12期
页码:
146-148
栏目:
智能、算法、系统工程
出版日期:
1900-01-01

文章信息/Info

Title:
Construction of Credit Evaluation Model for Telecommunication Clients Based on PSO-BP Neural Network
文章编号:
1673-629X(2012)12-0146-03
作者:
张奇 黄卫东
南京邮电大学
Author(s):
ZHANG Qi HUANG Wei-dong
Nanjing University of Posts & Telecommunications
关键词:
粒子群优化BP神经网络信用度
Keywords:
PSO BP neural network credit evaluation
分类号:
TP31
文献标志码:
A
摘要:
随着中国电信行业的迅速发展,提高电信客户信用评估的准确度和科学性及其重要。文中针对BP神经网络的不足之处,研究了将粒子群算法应用于BP神经网络的优化问题,主要是将PSO算法运用于优化BP神经网络的权值,并通过对电信客户行为属性的统计分析,将其作为客户信用度预测砰估的依据,建立了信用度评估模型,并用Matlab软件及其神经网络工具进行仿真和计‘算。实验表明,新模型采用的算法具有收敛速度快,预测精度高的优点,是一种有效的电信用户信用度评估模型
Abstract:
With the rapid development of telecoms in China, it is very important to promote the accuracy and scientific of telecommunica tion clients'credit rating. In this paper, the deficiency of Back Propagation (BP) neural network is optimized based on Particle Swarm Optimization (PSO) algorithm is studied aimed at the deficiency of BP neural network, PSO algorithm is used for optimizing parameters and threshold values of BP neural network. A credit evaluation model is built according to the statistic an',dysis of telecommunications clients " behavior character. Matlab software and its neural network box is used to simulate and compute. The experiment results show that PSO-BP algorithm works with quicker convergence rate and the higher forecast precision. This model is a effective one which is content with the demand of credit evaluation of telecommunications clients

相似文献/References:

[1]王菲露 宋杰 宋杨.BP神经网络在蛋白质二级结构预测中的应用[J].计算机技术与发展,2009,(05):217.
 WANG Fei-lu,SONG Jie,SONG Yang.Application of BP Neural Network in Protein Secondary Structure Prediction[J].,2009,(12):217.
[2]李秉 王凤山 李晓军.一种弹炮结合武器系统作战效能评估方法[J].计算机技术与发展,2009,(06):217.
 LI Bing,WANG Feng-shan,LI Xiao-jun.An Evaluation Method of Operational Effectiveness of Anti - Aircraft Gun Missile Weapon System[J].,2009,(12):217.
[3]贾其燕 王友仁 崔江.一种基于遗传算法的动态电流测试生成方法[J].计算机技术与发展,2009,(06):225.
 JIA Qi-yan,WANG You-ren,CUI Jiang.A Dynamic Current Test Generation Method Based on Genetic Algorithm[J].,2009,(12):225.
[4]王宁.一种基于BP神经网络的即时在线推荐系统[J].计算机技术与发展,2009,(07):230.
 WANG Ning.An Online Recommendation System Based on BP Network[J].,2009,(12):230.
[5]钟以维 徐应涛 张莹.用填充函数法改进的人脸比对算法[J].计算机技术与发展,2009,(08):78.
 ZHONG Yi-wei,XU Ying-tao,ZHANG Ying.Face Comparison Algorithm Based on Filled Function Method[J].,2009,(12):78.
[6]夏玫 陈立潮 王新波.一种提高BP神经网络泛化能力的改进算法[J].计算机技术与发展,2009,(09):62.
 XIA Mei,CHEN Li-chao,WANG Xin-bo.A Modified Algorithm to Improve Generalization Ability of BP Neural Network[J].,2009,(12):62.
[7]洪素惠 吴发成 米红.神经网络自适应PID在吹瓶机中的应用[J].计算机技术与发展,2009,(09):177.
 HONG Su-hui,WU Fa-cheng,MI Hong.Adaptive PID Controller Based on Neural Networks in Stretch Blow Molding[J].,2009,(12):177.
[8]崔海青 刘希玉.基于粒子群算法的RBF网络参数优化算法[J].计算机技术与发展,2009,(12):117.
 CUI Hai-qing,LIU Xi-yu.Parameter Optimization Algorithm of RBF Neural Network Based on PSO Algorithm[J].,2009,(12):117.
[9]陆克中 吴璞 王汝传.基于粒子群优化算法的非线性系统模型参数估计[J].计算机技术与发展,2008,(06):57.
 LU Ke-zhong,WU Pu,WANG Ru-chuan.A Method of Parameter Estimation in a Nonlinear System Model Based on Particle Swarm Optimization[J].,2008,(12):57.
[10]赵传信 张雪东 季一木[].改进的粒子群算法在VRP中的应用[J].计算机技术与发展,2008,(06):240.
 ZHAO Chuan-xin,ZHANG Xue-dong,JI Yi-mu.Application of Improved Particle Swarm Optimization in VRP[J].,2008,(12):240.
[11]宋发兴,高留洋,刘东升,等.基于粒子群优化的BP神经网络图像复原方法[J].计算机技术与发展,2014,24(06):149.
 SONG Fa-xing,GAO Liu-yang,LIU Dong-sheng,et al.A Method of Image Restoration Based on Particle Swarm Optimization for BP Neural Network[J].,2014,24(12):149.
[12]邓文杰. 基于聚粒子群算法的神经网络权值优化方法[J].计算机技术与发展,2017,27(10):16.
 DENG Wen-jie. A Neural Network Weights Optimization Method Based on Clustering Particle Swarm Optimization[J].,2017,27(12):16.

备注/Memo

备注/Memo:
江苏省自然科学越金资助项目(BK2010524);南京邮电大学什觥基金资助项日(NY210059)张奇(1980-),女,江苏尤锡人,讲师,研究方向为人工智能、网络舆情等;黄卫东,教授,研究方向为应急管理、网络舆情
更新日期/Last Update: 1900-01-01