[1]方昕.一种求解高校路网的改进蚁群算法策略与应用[J].计算机技术与发展,2012,(12):142-145.
FANG Xin.Strategies and Application of Improved Ant Colony Algorithm to Solve University Path[J].,2012,(12):142-145.
点击复制
一种求解高校路网的改进蚁群算法策略与应用(
)
《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]
- 卷:
-
- 期数:
-
2012年12期
- 页码:
-
142-145
- 栏目:
-
智能、算法、系统工程
- 出版日期:
-
1900-01-01
文章信息/Info
- Title:
-
Strategies and Application of Improved Ant Colony Algorithm to Solve University Path
- 文章编号:
-
1673-629X(2012)12-0142-04
- 作者:
-
方昕
-
安康学院电子与信息工程系
- Author(s):
-
FANG Xin
-
Dept. of Electronic and Information Engineering, Ankang University
-
- 关键词:
-
高校路网; 逆向蚁群; 最短路径; 改进蚁群算法
- Keywords:
-
university path; reverse ant colony; shortest path; improved ant colony algorithm
- 分类号:
-
TP301
- 文献标志码:
-
A
- 摘要:
-
针对标准蚁群算法易陷人早熟收敛的缺陷且为求解高校路网问题,提出一种求解高校路网的改进蚁群算法。该算法引入了一定比例的逆向蚁群与自平衡搜索策略,以平衡两种群求解并判定算法是否陷入局部最优,采用改进的状态转移概率算子引导蚁群转移,有效提高算法性能,增加种群多样性。实验以VisualStudi02005中C++编程实现仿真,结果表明此算法不但能有效求解高校路网最短路径,而且改进的算法收敛精度高,有效克服了早熟收敛问题
- Abstract:
-
Standard ant colony algorithm (ACO) easily leads to premature convergence in solving university path problem. To overcome this shortcoming,improved ACO is proposed. The ACO introduces a certain percentage reverse ant colony and self-balancing strategy to judge whether ACO starts to a local optimum solution. And a modified state transition operator will guide the ant colony transfer to effec tively improve the performance and increase the diversity. There use C++ programming of Visual Studio2005. net. The results show that this algorithm can not only effectively solve the university shortest path problem, but also has high convergence precision and overcomes premature convergence effectively
备注/Memo
- 备注/Memo:
-
陕西省科学与技术研究计划项目(2010JM3020);安康学院计算机应用技术重点学科项目(AKXYZDXK003);安康学院计算机科学勺技术重点学科项目方昕(1985-),女,陕西西安人,助教,硕士,主要研究方向为智能算法、GIS
更新日期/Last Update:
1900-01-01