[1]张宁 顾明亮 朱俊梅 周杰.语音活动检测对方言辨识系统的影响研究[J].计算机技术与发展,2012,(11):73-76.
ZHANG Ning,GU Ming-liang,ZHU Jun-mei,et al.Study on Influence of Voice Activity Detection for Dialects Identification System[J].,2012,(11):73-76.
点击复制
语音活动检测对方言辨识系统的影响研究(
)
《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]
- 卷:
-
- 期数:
-
2012年11期
- 页码:
-
73-76
- 栏目:
-
智能、算法、系统工程
- 出版日期:
-
1900-01-01
文章信息/Info
- Title:
-
Study on Influence of Voice Activity Detection for Dialects Identification System
- 文章编号:
-
1673-629X(2012)11-0073-04
- 作者:
-
张宁1 顾明亮1; 2 朱俊梅2 周杰1
-
[1]江苏师范大学物理与电子工程学院[2]江苏师范大学语言科学学院
- Author(s):
-
ZHANG Ning ; GU Ming-liang; ZHU Jun-mei; ZHOU Jie
-
[1]School of Physics & Electronic Engineering, Jiangsu Normal University[2]School of Linguistic Science, Jiangsu Normal University
-
- 关键词:
-
方言辨识; 语音活动检测; DD+Hang-over算法
- Keywords:
-
dialect identification; voice activity detection; DD+Hang-over algorittun
- 分类号:
-
TP391.4
- 文献标志码:
-
A
- 摘要:
-
分别把基于阈值判断和基于统计模型的语音活动检测(VAD)应用于汉语方言辨识系统中,对比了系统识别率及运算时间。其中基于能量、过零率等阈值判断的方法以其算法简单、计算量少的优点在高信噪比噪声环境下取得较好的效果,但在低信噪比噪声环境下准确性及鲁棒性急剧下降。在相同测试环境下,采用统计模型的DD+Hang-over算法取代传统经典阈值算法。实验表明,基于统计模型的算法在高斯混合模型(GMM)系统下运算时间稍氏,但抗噪声性能明显优越于基于阈值判断的算法,尤其在低信噪比的加性噪声环境下效果更显著
- Abstract:
-
Voice active detection (VAD) based on threshold judgement and statistical-model is used in Chinese dialect identification sys tem respectively. The recognition accuracy and computing time have also be compared. Threshold-based methods such as short term energy has achieved good results in a high SNR noisy environment with its simple algorithm and less computation. Wbereas,its performance declines sharply in the low SNR environment. Statistical model-based method with DD+ Hang-over is used instead of the traditional threshold-based methods under the same test environment. Experiments with the system of GMM show that although statistical model. based method with DD+Hang-over takes more time,it has better anti-noise performance, especially in the low SNR environment
备注/Memo
- 备注/Memo:
-
国家自然科学基金项目(61040053);江苏省普通高校研究生科研创新计划资助项目(CXZZll_0903)张宁(1987-),男,硕士研究生,研究方向为语音信号处理、模式识别;顾明亮,博士,教授,研究领域为语音信号处理、模式识别、机器学习等
更新日期/Last Update:
1900-01-01