[1]杨星 李保利 金明举.基于LDA模型的研究领域热点及趋势分析[J].计算机技术与发展,2012,(10):66-69.
 YANG Xing,Ll Bao-li,JIN Ming-ju.LDA-based Research Domain Hotspots and Trend Analysis[J].,2012,(10):66-69.
点击复制

基于LDA模型的研究领域热点及趋势分析()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2012年10期
页码:
66-69
栏目:
智能、算法、系统工程
出版日期:
1900-01-01

文章信息/Info

Title:
LDA-based Research Domain Hotspots and Trend Analysis
文章编号:
1673-629X(2012)10-0066-04
作者:
杨星 李保利 金明举
河南工业大学信息科学与工程学院
Author(s):
YANG XingLl Bao-liJIN Ming-ju
College of Information Science and Engineering, Henan University of Technology
关键词:
研究热点LDA模型Gibbs抽样主题数目主题演化
Keywords:
research hotspots LDA model Gibbs sampling topic number topic evolution
分类号:
TP31
文献标志码:
A
摘要:
随着研究的不断深入以及信息传播手段的进步,与某个研究领域相关的科学文献越来越多,也越来越容易得到。然而要阅读和分析这些数以千计的文献,仅凭人力已经难于实现对该领域研究重点、研究热点以及趋势进行全面系统地分析。鉴于此,提出一种基于LDA模型对某研究领域在一定时期内的热点及趋势进行自动识别的方法。该方法利用Gibbs抽样计算模型参数,获取领域热点主题以及热点词语,通过按时问后离散的主题演化方法分析热点主题在时间轴上的强度演化。以中文信息处理领域为例,通过对《中文信息学报》2001--2010十年间发表的学术论文进行分析,自动获取中文信息处理领域十年内的研究热点以及热点主题在时间轴上的演化趋势。实验结果初步证明了该方法的有效性
Abstract:
Along with continuing in-depth research and the advancement of modem information dissemination technologies,more and more papers in a research domain are becoming available. Obviously,it's quite difficult for researchers to read and analyze the huge amounts of papers for thoroughly detecting the research hotspots and trend of a domain. Targeting at solving the above problem,a LDA-based approach is proposed to automatically recognize the hotspots and trend of a research domain. Gibbs sampling is used to calculate the LDA model parameters and determine the research hotspots as well as their representative words. The trend analysis is achieved by post discretizing research topics over time. In the experiments,Chinese information processing is chosen as the target research domain. The research hotspots and trend over the ten year period from 2001 to 2010 were obtained by automatically analyzing all the papers published on the journal of Chinese information processing during that period. Preliminary experiments demonstrate the effectiveness of the proposed approach

相似文献/References:

[1]孔金生,任平英.TCP网络拥塞控制研究[J].计算机技术与发展,2014,24(01):43.
 KONG Jin-sheng,REN Ping-ying.Summary of TCP Network Congestion Control Research[J].,2014,24(10):43.
[2]陈攀[],杨浩[],吕品[][],等. 基于LDA模型的文本相似度研究[J].计算机技术与发展,2016,26(04):82.
 CHEN Pan[],YANG Hao[],L Pin[][],et al. Study on Text Similarity Based on LDA Model[J].,2016,26(10):82.
[3]刘红兵[],李文坤[],张仰森[]. 基于LDA模型和多层聚类的微博话题检测[J].计算机技术与发展,2016,26(06):25.
 LIU Hong-bing[],LI Wen-kun[],ZHANG Yang-sen[]. Microblog Topic Detection Based on LDA Model and Multi-level Clustering[J].,2016,26(10):25.
[4]倪丽萍,刘小军,马驰宇. 基于LDA模型和AP聚类的主题演化分析[J].计算机技术与发展,2016,26(12):6.
 NI Li-ping,LIU Xiao-jun,MA Chi-yu. Topic Evolution Analysis Based on LDA Model and AP Clustering[J].,2016,26(10):6.
[5]李越,曹菡. 基于美食互动社区的用户饮食行为模型研究[J].计算机技术与发展,2016,26(12):156.
 LI Yue,CAO Han. Research on User Eating Behavior Model Based on Food Interactive Community[J].,2016,26(10):156.
[6]陆菁宇,张绍阳,黄文旎.学科发展状态的知识图谱构建[J].计算机技术与发展,2020,30(06):145.[doi:10. 3969 / j. issn. 1673-629X. 2020. 06. 028]
 LU Jing-yu,ZHANG Shao-yang,HUANG Wen-ni.Analysis of Development Status of Discipline Based on Knowledge Graph[J].,2020,30(10):145.[doi:10. 3969 / j. issn. 1673-629X. 2020. 06. 028]
[7]仇秋飞,周武源,雷良育,等.深度学习在机器人领域的应用进展[J].计算机技术与发展,2021,31(11):208.[doi:10. 3969 / j. issn. 1673-629X. 2021. 11. 034]
 QIU Qiu-fei,ZHOU Wu-yuan,LEI Liang-yu,et al.Deep Learning in Robotics:Hotspots and Progress[J].,2021,31(10):208.[doi:10. 3969 / j. issn. 1673-629X. 2021. 11. 034]
[8]付 琳,张 媛.文本数据事件检测的研究热点及趋势分析[J].计算机技术与发展,2023,33(02):24.[doi:10. 3969 / j. issn. 1673-629X. 2023. 02. 004]
 FU Lin,ZHANG Yuan.Research Hotspots and Trend Analysis of Text Data Event Detection[J].,2023,33(10):24.[doi:10. 3969 / j. issn. 1673-629X. 2023. 02. 004]

备注/Memo

备注/Memo:
河南省基础与前沿技术研究项目(112300410007);河南省教育自然科学研究计划(2011A120002)杨星(1986-),男,硕士研究生,CCF会员,研究方向为语苦信息处理;李保利,博士,教授,研究方向为语言信息处理、机器学习等
更新日期/Last Update: 1900-01-01