[1]李智玲 胡彧.改进的属性约简算法在数据挖掘中的应用研究[J].计算机技术与发展,2012,(10):47-50.
 LI Zhi-ling,HU Yu.Application Research of Improved Attribute Reduction Algorithm in Data Mining[J].,2012,(10):47-50.
点击复制

改进的属性约简算法在数据挖掘中的应用研究()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2012年10期
页码:
47-50
栏目:
智能、算法、系统工程
出版日期:
1900-01-01

文章信息/Info

Title:
Application Research of Improved Attribute Reduction Algorithm in Data Mining
文章编号:
1673-629X(2012)10-0047-04
作者:
李智玲1 胡彧2
[1]山西财经大学实验教学中心[2]太原理工大学测控技术研究所
Author(s):
LI Zhi-ling HU Yu
[1]Experimental Teaching Center, Shanxi University of Finance and Economics[2]Institute of Measurement and Control Technology, Taiyuan University of Technology
关键词:
数据挖掘糙粗集区分矩阵属性约简属性频率
Keywords:
data mining rough set discernibility matrix attribute reduction attribute frequency
分类号:
TP301.6
文献标志码:
A
摘要:
属性约简是应用粗糙集理论进行数据挖掘有效的方法之一,HORAFA属性约简算法它的不足之处在于约简效率和完备性。应用粗糙集对知识分类的特点,建立了新的数据挖掘模型。在模型的属性约简模块中,详细分析了HORAFA算法,提出了对其改进的HORAFA—AFVDM算法。该算法是在核中依次加入属性重要性最大的属性a,对于Red=Redu{a}。当POSred-ai(D)=POS。(D)时删除a,直到不能再删为止,保证了算法的完备性。实验在MATLAB环境下实现,算法的测试数据来源于UCI数据集,通过对改进前后两种算法的比较,证实了改进后算法从属性约简效率和算法运行时间上均比之前的算法有显著的提高,文中将该数据挖掘模型应用到短信数据挖掘系统中
Abstract:
Attribute reduction is an effective method of rough set theory for data mining, shortcomings of HORAFA algorithm are reduction efficiency and maturity. A new model of data mining was propounded according to the characteristic of rough sets classifying knowledge. HORAFA algorithm was analyzed in the attribute reduction of model and the improved attribute reduction algorithm, HORAFA-AFVDM was obtained. It joins the most important attributes a to core followed by, forRed=Redu{a}Sred-ai(D) = POSC ( D ), then delete a from the core. so the maturity of the algorithm is ensured. The experiment is achieved using the tool of the MATLAB. The test data of algorithm comes from the UCI data sets. It proves validity of improved algorithm through the comparison of the efficiency of attribute reduction and running time of the two algorithms. Finally,the new data mining model was applied to SMS data mining system

相似文献/References:

[1]项响琴 汪彩梅.基于聚类高维空间算法的离群数据挖掘技术研究[J].计算机技术与发展,2010,(01):120.
 XIANG Xiang-qin,WANG Cai-mei.Study of Outlier Data Mining Based on CLIQUE Algorithm[J].,2010,(10):120.
[2]李雷 丁亚丽 罗红旗.基于规则约束制导的入侵检测研究[J].计算机技术与发展,2010,(03):143.
 LI Lei,DING Ya-li,LUO Hong-qi.Intrusion Detection Technology Research Based on Homing - Constraint Rule[J].,2010,(10):143.
[3]吉同路 柏永飞 王立松.住宅与房地产电子政务中数据挖掘的应用研究[J].计算机技术与发展,2010,(01):235.
 JI Tong-lu,BAI Yong-fei,WANG Li-song.Study and Application of Data Mining in E-government of House and Real Estate Industry[J].,2010,(10):235.
[4]杨静 张楠男 李建 刘延明 梁美红.决策树算法的研究与应用[J].计算机技术与发展,2010,(02):114.
 YANG Jing,ZHANG Nan-nan,LI Jian,et al.Research and Application of Decision Tree Algorithm[J].,2010,(10):114.
[5]赵裕啸 倪志伟 王园园 伍章俊.SQL Server 2005数据挖掘技术在证券客户忠诚度的应用[J].计算机技术与发展,2010,(02):229.
 ZHAO Yu-xiao,NI Zhi-wei,WANG Yuan-yuan,et al.Application of Data Mining Technology of SQL Server 2005 in Customer Loyalty Model in Securities Industry[J].,2010,(10):229.
[6]张笑达 徐立臻.一种改进的基于矩阵的频繁项集挖掘算法[J].计算机技术与发展,2010,(04):93.
 ZHANG Xiao-da,XU Li-zhen.An Advanced Frequent Itemsets Mining Algorithm Based on Matrix[J].,2010,(10):93.
[7]王爱平 王占凤 陶嗣干 燕飞飞.数据挖掘中常用关联规则挖掘算法[J].计算机技术与发展,2010,(04):105.
 WANG Ai-ping,WANG Zhan-feng,TAO Si-gan,et al.Common Algorithms of Association Rules Mining in Data Mining[J].,2010,(10):105.
[8]张广路 雷景生 吴兴惠.一种改进的Apriori关联规则挖掘算法(英文)[J].计算机技术与发展,2010,(06):84.
 ZHANG Guang-lu,LEI Jing-sheng,WU Xing-hui.An Improved Apriori Algorithm for Mining Association Rules[J].,2010,(10):84.
[9]吴楠 胡学钢.基于聚类分区的序列模式挖掘算法研究[J].计算机技术与发展,2010,(06):109.
 WU Nan,HU Xue-gang.Research on Clustering Partition-Based Approach of Sequential Pattern Mining[J].,2010,(10):109.
[10]吴青 傅秀芬.水平分布数据库的正负关联规则挖掘[J].计算机技术与发展,2010,(06):113.
 WU Qing,FU Xiu-fen.Positive and Negative Association Rules Mining on Horizontally Partitioned Database[J].,2010,(10):113.

备注/Memo

备注/Memo:
山西省自然科学基金资助项目(2009011019-2)李智玲(1978-),女,山西方山人,讲师,硕士,主要研究方向为数据挖掘、知识工程;胡彧,教授,博士,主要研究方向为智能信息处理与数据挖掘、智能控制理论与应用
更新日期/Last Update: 1900-01-01