[1]兰远东 邓辉舫.基于Kullback-Leibler与PCA的概率密度比值估计[J].计算机技术与发展,2012,(06):107-110.
 LAN Yuan-dong,DENG Hui-fang.Ratio Estimation of Probability Density Based on Kullback-Leibler and PCA[J].,2012,(06):107-110.
点击复制

基于Kullback-Leibler与PCA的概率密度比值估计()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2012年06期
页码:
107-110
栏目:
智能、算法、系统工程
出版日期:
1900-01-01

文章信息/Info

Title:
Ratio Estimation of Probability Density Based on Kullback-Leibler and PCA
文章编号:
1673-629X(2012)06-0107-04
作者:
兰远东12 邓辉舫1
[1]华南理工大学计算机科学与工程学院[2]惠州学院计算机科学系
Author(s):
LAN Yuan-dong DENG Hui-fang
[1]School of Computer Science and Engineering, South China University of Technology[2]Department of Computer Science, Huizhou University
关键词:
概率密度机器学习主成分分析样本空间
Keywords:
probability density machine learning principal component analysis sample space
分类号:
TP391
文献标志码:
A
摘要:
为了更好地解决在机器学习和数据挖掘等领域中经常遇到的两个概率密度函数的比值估计问题,文中提出了一种新的概率密度比值估计算法。该算法基于Kullback-Leibler距离,综合混合高斯模型和主成分分析的概率密度比值估计方法,使用混合概率主成分分析为两个概率密度比值函数建模。在概率密度比值估计的过程中,不是分别估计比值函数的分子和分母,而是对整个比值函数进行混合组成建模。算法避免了分别对分子分母的概率密度估计,降低了估计的误差。实验表明该算法能够获得较好的估计结果
Abstract:
In order to solve the estimation problems for the ratio of two probability density functions, which is often encountered in ma- chine learning and data mining area,propose a new estimation algorithm for the ratio of the probability density. The algorithm is based on Kullback-Leibler distance, integrated Ganssian mixture model and principal component analysis of the estimation methods, use mixed probabilistic principal component analysis for the modeling. In the estimation process for the ratio of the probability density, not separately estimate the numerator and denominator of the ratio function, but modeling the function in the same time. In this way, the algorithm can reduce the estimated error. Experiments show that the algorithm can obtain better result

相似文献/References:

[1]陈全 赵文辉 李洁 江雨燕.选择性集成学习算法的研究[J].计算机技术与发展,2010,(02):87.
 CHEN Quan,ZHAO Wen-hui,LI Jie,et al.Research of Selective Ensemble Learning Algorithm[J].,2010,(06):87.
[2]黄秀丽 王蔚.SVM在非平衡数据集中的应用[J].计算机技术与发展,2009,(06):190.
 HUANG Xiu-li,WANG Wei.Application of SVM in Imbalances Dataset[J].,2009,(06):190.
[3]鲁晓南 接标.一种基于个性化邮件特征的反垃圾邮件系统[J].计算机技术与发展,2009,(08):155.
 LU Xiao-nan,JIE Biao.An Individual Anti- Spam Technology[J].,2009,(06):155.
[4]张苗 张德贤.多类支持向量机文本分类方法[J].计算机技术与发展,2008,(03):139.
 ZHANG Miao,ZHANG De-xian.Research on Text Categorization Based on. M- SVMs[J].,2008,(06):139.
[5]汤萍萍 王红兵.基于强化学习的Web服务组合[J].计算机技术与发展,2008,(03):142.
 TANG Ping-ping,WANG Hong-bing.Web Service Composition Based on Reinforcement -Learning[J].,2008,(06):142.
[6]杨雪洁 赵姝 张燕平.基于商空间理论的冬小麦产量预测和分析[J].计算机技术与发展,2008,(03):249.
 YANG Xue-jie,ZHAO Shu,ZHANG Yan-ping.Analysis on Winter Wheat Yield Based on Quotient Space Theory[J].,2008,(06):249.
[7]赵凯 王爱平 吴刚.非高斯噪声下Kalman滤波熵理论算法研究[J].计算机技术与发展,2008,(06):40.
 ZHAO Kai,WANG Ai-ping,WU Gang.Kalman Filter Algorithm under Non- Guassian Noises Using Entropy Theory[J].,2008,(06):40.
[8]汤伟 程家兴 纪霞.一种基于概率推理的邮件过滤系统的研究与设计[J].计算机技术与发展,2008,(08):76.
 TANG Wei,CHENG Jia-xing,JI Xia.Research and Design of a Spam Filtering System Based on Probability Inference[J].,2008,(06):76.
[9]孙海虹 丁华福.基于模糊粗糙集的Web文本分类[J].计算机技术与发展,2010,(07):21.
 SUN Hai-hong,DING Hua-fu.Web Document Classification Based on Fuzzy-Rough Set[J].,2010,(06):21.
[10]汤伟 程家兴 纪霞.统计学理论在邮件分类中的应用研究[J].计算机技术与发展,2008,(12):231.
 TANG Wei,CHENG Jia-xing,JI Xia.Research and Design of a Spam Filtering System Based on Statistical Learning Theory[J].,2008,(06):231.

备注/Memo

备注/Memo:
国家自然科学基金(61170193)兰远东(1975-),男,博士研究生,研究方向为模式识别与机器学习邓辉舫,教授,博士生导师,研究方向为模式识别与机器学习
更新日期/Last Update: 1900-01-01