[1]邓伟林 胡桂武.一种求解离散优化问题的粒子群算法[J].计算机技术与发展,2012,(05):116-119.
 DENG Wei-lin,HU Gui-wu.A Particle Swarm Algorithm for Discrete Optimization Problem[J].,2012,(05):116-119.
点击复制

一种求解离散优化问题的粒子群算法()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2012年05期
页码:
116-119
栏目:
智能、算法、系统工程
出版日期:
1900-01-01

文章信息/Info

Title:
A Particle Swarm Algorithm for Discrete Optimization Problem
文章编号:
1673-629X(2012)05-0116-04
作者:
邓伟林1 胡桂武2
[1]广东轻工职业技术学院计算机系[2]广东商学院数学与计算科学系
Author(s):
DENG Wei-lin1 HU Gui-wu2
[1]Department of Computing, Guangdong Industry Technical College[2]Department of Mathematics and Computing Science, Guangdong University of Business Studies
关键词:
粒子群算法遗传粒子群算法遗传算法车辆路径问题
Keywords:
particle swarm optimization algorithmgenetic particle swarm algorithmgenetic algorithmvehicle routing problem
分类号:
TP301.6
文献标志码:
A
摘要:
粒子群算法在求解连续变量问题有了比较成功的应用,但是对离散变量问题方面的应用研究却相对滞后。针对离散优化问题,提出了一种遗传粒子群算法。算法使用了交叉、变异等遗传算子替代传统粒子群算法的速度一位移公式,克服了传统粒子群算法对组合优化问题编码时出现的信息冗余的问题,提高了搜索效率。应用该算法求解了车辆路径问题,实验结果表明,该算法具有较好的全局收敛能力和较快的收敛速度。在同等条件下,求解效果要明显好于遗传算法和基于速度位移公式的粒子群算法
Abstract:
Particle swarm optimization algorithm is successful for solving the problems of continuous variables, but it is not so good for solving the problems of discrete variables. A genetic particle swarm optimization algorithm ( GPSO ) is proposed for solving the discrete optimization problems. It uses the crossover and mutation operator instead of velocity-displacement operates to update the particles. The problem of information redundancy in solving combinatorial optimization has been overcome. It is used for solving the vehicle routing problem. Experimental results indicate that GPSO has better global convergence and faster convergence rate. In contrast to the GA with the same operators and the PSO based velocity-displacement operates, GPSO has much better performance

相似文献/References:

[1]张爱华 江中勤 张华.基于粒子群优化算法的分形图像压缩编码[J].计算机技术与发展,2010,(02):21.
 ZHANG Ai-hua,JIANG Zhong-qin,ZHANG Hua.Fractal Image Compression Coding Based on PSO[J].,2010,(05):21.
[2]唐俊.PSO算法原理及应用[J].计算机技术与发展,2010,(02):213.
 TANG Jun.Principle and Application of PSO Algorithm[J].,2010,(05):213.
[3]张捍东 廖天红 岑豫皖.用模拟退火思想的粒子群算法实现图像分割[J].计算机技术与发展,2010,(05):83.
 ZHANG Han-dong,LIAO Tian-hong,CEN Yu-wan.Image Segmentation Through Particle Swarm Optimization Based on Simulated Annealing[J].,2010,(05):83.
[4]廖锋 高兴宝.差分演化算法在约束优化问题中的应用[J].计算机技术与发展,2010,(05):187.
 LIAO Feng,GAO Xing-bao.Application of Differential Evolution Algorithms on Constraint Optimization Problems[J].,2010,(05):187.
[5]来磊 卢文科 邓开连.基于二维Tsallis交叉熵直线型图像阈值分割方法[J].计算机技术与发展,2010,(06):105.
 LAI Lei,LU Wen-ke,DENG Kai-lian.New Image Thresholding Segmentation Methods Based on Two-Dimensional Tsallis Cross-Entropy Liner-Type[J].,2010,(05):105.
[6]邹毅 朱晓萍 王秀平.一种基于混沌优化的混合粒子群算法[J].计算机技术与发展,2009,(11):18.
 ZOU Yi,ZHU Xiao-ping,WANG Xiu-ping.A Hybrid PSO Algorithm Based on Chaos Optimization[J].,2009,(05):18.
[7]王为为 程家兴 贺晟.基于佳点集交叉的粒子群算法[J].计算机技术与发展,2009,(12):32.
 WANG Wei-wei,CHENG Jia-xing,HE Sheng.Particle Swarm Algorithm Based on Good Point Set Crossover[J].,2009,(05):32.
[8]贾瑞玉 黄义堂 邢猛.一种动态改变权值的简化粒子群算法[J].计算机技术与发展,2009,(02):137.
 JIA Rui-yu,HUANG Yi-tang,XING Meng.A Modified Simple Particle Swarm Optimization Using Dynamically Decreasing Inertia Weight[J].,2009,(05):137.
[9]卢珊萍 于盛林.基于粒子群算法的细胞神经网络模板参数设计[J].计算机技术与发展,2009,(04):83.
 LU Shan-ping,YU Sheng-lin.A Template Design Method for Cellular Neural Network Based on Particle Swarm Optimizer Algorithm[J].,2009,(05):83.
[10]王艳玲 李龙澍 胡哲.群体智能优化算法[J].计算机技术与发展,2008,(08):114.
 WANG Yan-ling,LI Long-shu,HU Zhe.Swarm Intelligence Optimization Algorithm[J].,2008,(05):114.

备注/Memo

备注/Memo:
广东省自然科学基金(06301003);广东轻工职业技术学院科研启动基金(KY200817)邓伟林(1980-),男,广东韶关人,讲师,博士生,CCF会员,研究方向为粒子群算法、遗传算法、群体智能;胡桂武,教授,博士,CCF高级会员,研究方向为人工智能、生物信息学、数据挖掘
更新日期/Last Update: 1900-01-01