[1]刘佳新.基于频繁序列树的交互式序列模式挖掘算法[J].计算机技术与发展,2012,(05):64-66.
 LIU Jia-xin.An Interactive Sequential Patterns Mining Algorithm Based on Frequent Sequence Tree[J].,2012,(05):64-66.
点击复制

基于频繁序列树的交互式序列模式挖掘算法()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2012年05期
页码:
64-66
栏目:
智能、算法、系统工程
出版日期:
1900-01-01

文章信息/Info

Title:
An Interactive Sequential Patterns Mining Algorithm Based on Frequent Sequence Tree
文章编号:
1673-629X(2012)05-0064-03
作者:
刘佳新
燕山大学图书馆
Author(s):
LIU Jia-xin
Library, Yanshan University
关键词:
数据挖掘序列模式交互式挖掘频繁序列树
Keywords:
data mining sequential patterns interactive mining frequent sequence tree
分类号:
TP311.131
文献标志码:
A
摘要:
为了减少在序列模式挖掘过程中由于重复运行挖掘算法而产生的时空消耗,提出了一种基于频繁序列树的交互式序列模式挖掘算法(IsPM)。ISPM算法采用频繁序列树作为序列存储结构,频繁序列树中存储数据库中满足频繁序列树支持度阈值的所有序列模式及其支持度信息。当支持度发生变化时,通过减少本次挖掘所要构造投影数据库的频繁项的数量来缩减投影数据库的规模,从而减少时空消耗。实验结果表明,ISPM算法在时间性能上优于PrefixSpan算法和Inc—Span算法
Abstract:
An interactive sequential patterns mining algorithm based on frequent sequence tree, called ISPM, is proposed in this paper in order to reduce the time and space consumption generated by repeafly running mining algorithm in the process of the sequential pattern mining. ISPM uses the frequent sequence tree as the storage sturcture of the algorithm. The frequent sequence tree stores all the sequential patterns with its support that meet the frequent sequence tree support threshold in the database. When the support is changed, ISPM can re- duce the time and space consumption through by reducing the number of frequent items that construct the projected databases to reduce the size of the projected databases. Experiments show that ISPM outperforms PrefixSpan and lncSpan in time cost

相似文献/References:

[1]项响琴 汪彩梅.基于聚类高维空间算法的离群数据挖掘技术研究[J].计算机技术与发展,2010,(01):120.
 XIANG Xiang-qin,WANG Cai-mei.Study of Outlier Data Mining Based on CLIQUE Algorithm[J].,2010,(05):120.
[2]李雷 丁亚丽 罗红旗.基于规则约束制导的入侵检测研究[J].计算机技术与发展,2010,(03):143.
 LI Lei,DING Ya-li,LUO Hong-qi.Intrusion Detection Technology Research Based on Homing - Constraint Rule[J].,2010,(05):143.
[3]吉同路 柏永飞 王立松.住宅与房地产电子政务中数据挖掘的应用研究[J].计算机技术与发展,2010,(01):235.
 JI Tong-lu,BAI Yong-fei,WANG Li-song.Study and Application of Data Mining in E-government of House and Real Estate Industry[J].,2010,(05):235.
[4]杨静 张楠男 李建 刘延明 梁美红.决策树算法的研究与应用[J].计算机技术与发展,2010,(02):114.
 YANG Jing,ZHANG Nan-nan,LI Jian,et al.Research and Application of Decision Tree Algorithm[J].,2010,(05):114.
[5]赵裕啸 倪志伟 王园园 伍章俊.SQL Server 2005数据挖掘技术在证券客户忠诚度的应用[J].计算机技术与发展,2010,(02):229.
 ZHAO Yu-xiao,NI Zhi-wei,WANG Yuan-yuan,et al.Application of Data Mining Technology of SQL Server 2005 in Customer Loyalty Model in Securities Industry[J].,2010,(05):229.
[6]张笑达 徐立臻.一种改进的基于矩阵的频繁项集挖掘算法[J].计算机技术与发展,2010,(04):93.
 ZHANG Xiao-da,XU Li-zhen.An Advanced Frequent Itemsets Mining Algorithm Based on Matrix[J].,2010,(05):93.
[7]王爱平 王占凤 陶嗣干 燕飞飞.数据挖掘中常用关联规则挖掘算法[J].计算机技术与发展,2010,(04):105.
 WANG Ai-ping,WANG Zhan-feng,TAO Si-gan,et al.Common Algorithms of Association Rules Mining in Data Mining[J].,2010,(05):105.
[8]张广路 雷景生 吴兴惠.一种改进的Apriori关联规则挖掘算法(英文)[J].计算机技术与发展,2010,(06):84.
 ZHANG Guang-lu,LEI Jing-sheng,WU Xing-hui.An Improved Apriori Algorithm for Mining Association Rules[J].,2010,(05):84.
[9]吴青 傅秀芬.水平分布数据库的正负关联规则挖掘[J].计算机技术与发展,2010,(06):113.
 WU Qing,FU Xiu-fen.Positive and Negative Association Rules Mining on Horizontally Partitioned Database[J].,2010,(05):113.
[10]孙名松 邸明星 王湛昱.多决策树算法在P2P网络流量检测中的应用[J].计算机技术与发展,2010,(06):126.
 SUN Ming-song,DI Ming-xing,WANG Zhan-yu.Application of Decision Tree Algorithm in Traffic Detection of P2P Network[J].,2010,(05):126.
[11]吴楠 胡学钢.基于聚类分区的序列模式挖掘算法研究[J].计算机技术与发展,2010,(06):109.
 WU Nan,HU Xue-gang.Research on Clustering Partition-Based Approach of Sequential Pattern Mining[J].,2010,(05):109.
[12]王娜娜 陈立潮 潘理虎 张英俊.基于时间间隔和点击量的Prefixspan改进算法[J].计算机技术与发展,2011,(10):81.
 WANG Na-na,CHEN Li-chao,PAN Li-hu,et al.An Improved Prefixspan Algorithm Based on Time Interval and Click Quantity[J].,2011,(05):81.
[13]占美星[],杨颖[],杨磊[]. 基于树结构多重最小支持度的挖掘算法研究[J].计算机技术与发展,2014,24(08):45.
 ZHAN Mei-xing[],YANG Ying[],YANG Lei[]. Study on Mining Algorithm Based on Tree Structure Multiple Minimum Supports[J].,2014,24(05):45.

备注/Memo

备注/Memo:
国家自然科学基金资助项目(61170190);秦皇岛市科学技术研究与发展计划项目(201001A018)刘佳新(1978-),女,吉林图们人,博士研究生,研究领域为数据挖掘
更新日期/Last Update: 1900-01-01