[1]徐迪 刘瑞兰.基于QPSO算法的无线传感器定位研究[J].计算机技术与发展,2012,(02):41-44.
 XU Di,LIU Rui-lan.Wireless Sensor Networks Location Study Based on QPSO[J].,2012,(02):41-44.
点击复制

基于QPSO算法的无线传感器定位研究()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2012年02期
页码:
41-44
栏目:
智能、算法、系统工程
出版日期:
1900-01-01

文章信息/Info

Title:
Wireless Sensor Networks Location Study Based on QPSO
文章编号:
1673-629X(2012)02-0041-04
作者:
徐迪 刘瑞兰
南京邮电大学
Author(s):
XU DiLIU Rui-lan
Nanjing University of Posts and Telecommunications
关键词:
无线传感器网络量子粒子群算法定位QPSO-RSSI
Keywords:
WSN PSO localization QPSO-RSSI
分类号:
TP31
文献标志码:
A
摘要:
网络节点采集的数据、对目标的追踪、网络拓扑管理等都需要确定的位置信息才有意义,因此节点自定位技术是大多数应用的基础和前提。RSSI测距技术广泛应用于WSN节点定位中,但其测距误差较大,直接导致节点自身定位精度不高。针对此类情况,文中通过对无线电传播路径损耗模型以及大量实测数据的分析,提出了一种基于误差校正的定位优化算法。利用量子粒子群优化算法将存在偏差LQI值进行优化,从而对误差进行补偿。实验结果表明,量子机制的引入解决了局部优化的问题,同时使原有算法的优化性能得到一定程度的提高,具有普遍应用意义
Abstract:
Since the data collection,object tracking and mesh topology managing is significant only when the positions of corresponding sensor nodes have been identified,therefore,as one of the core technologies,the nodes locating plays a pivotal role in the WSN application.WSN nodes which placed in application environment always get some affect by environment.For such case,by analyzing the model of radio wave propagation loss and empirical data from real measurement,a localization algorithm based on error correction is provided in this paper.Use QPSO-RSSI which based on particle swarm optimization(QPSO) to optimize a number of LQI(which exist some deviation)which unknow node received from sink node,this can compensate the deviation.Then transform from LQI to RSSI to get distance.The consequence of experiment shows that this algorithm can improve accuracy of location,can be applied to many applications

相似文献/References:

[1]李雷 付东阳.基于分层模型的无线传感器网络分簇路由算法[J].计算机技术与发展,2010,(01):132.
 LI Lei,FU Dong-yang.Clustering Protocol Algorithm of Wireless Sensor Networks Based on Level Model[J].,2010,(02):132.
[2]魏烨嘉 王汝传[] 李伟伟 黄海平[] 孙力娟[].基于普适计算环境的三维空间RSSI位置感知研究[J].计算机技术与发展,2010,(04):183.
 WEI Ye-jia,WANG Ru-ehuan[],LI Wei-wei,et al.Research on RSSI- Based Location- Aware in Three- Dimensional Space for Pervasive Computing Environment[J].,2010,(02):183.
[3]邓黎黎 刘才兴.基于信任的无线传感器网络安全路由研究[J].计算机技术与发展,2010,(06):159.
 DENG Li-li,LIU Cai-xing.Research of Trust-Based Secure Routing Protocols for Wireless Sensor Networks[J].,2010,(02):159.
[4]杜鹏雷 吴晓 杨丽平 江涌.面向精准农业的感知节点传感器驱动与控制[J].计算机技术与发展,2010,(06):233.
 DU Peng-lei,WU Xiao,YANG Li-ping,et al.Drive and Control of Sensor Node Facing Precision Agriculture[J].,2010,(02):233.
[5]程佳 支小莉 大贝 晴俊.基于无线传感器网络和ICA的桥梁诊断系统[J].计算机技术与发展,2009,(06):1.
 CHENG Jia,ZHI Xiao-li,OGAI Harutoshi.A Bridge Diagnosis System Based on Wireless Sensor Network and Independent Component Analysis[J].,2009,(02):1.
[6]汪小龙[] 方潜生 葛运建 张伟林[] 周学海[].基于WSN的智能建筑综合控制系统研究[J].计算机技术与发展,2009,(07):48.
 WANG Xiao-long,FANG Qian-sheng,GE Yun-jian,et al.Research on Integrated- Control- System of Intelligent- Building Based on WSN[J].,2009,(02):48.
[7]户晓玲 曾建潮.基于微粒群模型的移动传感器网络部署研究[J].计算机技术与发展,2009,(10):81.
 HU Xiao-ling,ZENG Jian-chao.Deployment of Wireless Sensor Networks Mobile Nodes Based on Particle Swarm Optimization Model[J].,2009,(02):81.
[8]闫倩倩 许勇 夏海燕.一种ZigBee路由算法的分析与改进[J].计算机技术与发展,2009,(12):59.
 YAN Qian-qian,XU Yong,XIA Hai-yan.Analysis and Improvement of a Routing Algorithm in Wireless Sensor Network Based on ZigBee[J].,2009,(02):59.
[9]刘曙 刘林峰 陶军.一种基于蜂窝结构的改进GAF算法[J].计算机技术与发展,2009,(01):39.
 LIU Shu,LIU Lin-feng,TAO Jun.Improved GAF Algorithm with Hexagon- Based Virtual Infrastructure[J].,2009,(02):39.
[10]邓明 张国枢 陈蕴.一种基于ZigBee协议的矿井人员定位技术研究[J].计算机技术与发展,2009,(02):243.
 DENG Ming,ZHANG Guo-shu,CHEN Yun.Research on Positioning Technology of Mining Personnel Based upon ZigBee Protocol[J].,2009,(02):243.
[11]张中芳,张玲华.基于量子粒子群优化的DV-Hop 算法研究[J].计算机技术与发展,2018,28(05):81.[doi:10.3969/j.issn.1673-629X.2018.05.019]
 ZHANG Zhong-fang,ZHANG Ling-hua.Research on DV-Hop Algorithm Based on Quantum Particle Swarm Optimization[J].,2018,28(02):81.[doi:10.3969/j.issn.1673-629X.2018.05.019]

备注/Memo

备注/Memo:
南京邮电大学攀登计划项目(NY207057)徐迪(1985-),女,硕士研究生,研究方向为网络传感器和传感器网络;刘瑞兰,博士,硕士生导师,副教授,研究方向为智能软测量技术以及网路传感器与传感器网路
更新日期/Last Update: 1900-01-01