[1]焉为家 郭雨珍.改进的粒子群算法求解蛋白质结构预测问题[J].计算机技术与发展,2011,(12):109-112.
 YAN Wei-jia,GUO Yu-zhen.Modified Particle Swarm Optimization Algorithm for Protein Structure Prediction Problem[J].,2011,(12):109-112.
点击复制

改进的粒子群算法求解蛋白质结构预测问题()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2011年12期
页码:
109-112
栏目:
智能、算法、系统工程
出版日期:
1900-01-01

文章信息/Info

Title:
Modified Particle Swarm Optimization Algorithm for Protein Structure Prediction Problem
文章编号:
1673-629X(2011)12-0109-04
作者:
焉为家 郭雨珍
南京航空航天大学理学院
Author(s):
YAN Wei-jia GUO Yu-zhen
College of Science, Nanjing University of Aeronautics and Astronautics
关键词:
蛋白质结构预测粒子群算法HP格点模型组合优化
Keywords:
protein structure predictionparticle swarm optimization algorithmHP lattice modelcombination optimization
分类号:
TQ937
文献标志码:
A
摘要:
蛋白质的生物学功能是由其空间结构决定的,因此,蛋白质结构预测就成为生物信息学领域中极具挑战性的问题之一。粒子群算法是一种新的群智能算法,优势在于简单容易实现,又有深刻的智能背景。在优化领域,粒子群算法适用于求解连续优化问题,而基于HP格点模型的蛋白质结构预测问题是一个离散问题。因此,文中通过借鉴单点调整算法的思想,引入了调整子和调整序的概念,重构了粒子群算法,并用改进的粒子群算法求解了这一典型的离散问题。数值模拟结果说明了算法的有效性
Abstract:
The biological functions of protein are detemfined by their dimensional folding structures, and protein structure prediction remains one of the most challenging problems in bioinformatics research. Particle swarm optimization (PSO) algorithm is a new group intelligent algorithm. The advantage of it is simple and easy to achieve,profoundly intelligent backgroud. In the optimization field,PSO is suitable for continuous optimization,and protein structure prediction based on 2D IIP lattice model is a discrete problem. Therefore,the concepts of adjustment operator and adjustment sequence is introduced to reconstruct PSO by using the ideas of node regulation algorithm. It is proposed to solve the typical discrete problem. The Numerical simulation results indicate that the algorithm is effective

相似文献/References:

[1]张爱华 江中勤 张华.基于粒子群优化算法的分形图像压缩编码[J].计算机技术与发展,2010,(02):21.
 ZHANG Ai-hua,JIANG Zhong-qin,ZHANG Hua.Fractal Image Compression Coding Based on PSO[J].,2010,(12):21.
[2]唐俊.PSO算法原理及应用[J].计算机技术与发展,2010,(02):213.
 TANG Jun.Principle and Application of PSO Algorithm[J].,2010,(12):213.
[3]张捍东 廖天红 岑豫皖.用模拟退火思想的粒子群算法实现图像分割[J].计算机技术与发展,2010,(05):83.
 ZHANG Han-dong,LIAO Tian-hong,CEN Yu-wan.Image Segmentation Through Particle Swarm Optimization Based on Simulated Annealing[J].,2010,(12):83.
[4]廖锋 高兴宝.差分演化算法在约束优化问题中的应用[J].计算机技术与发展,2010,(05):187.
 LIAO Feng,GAO Xing-bao.Application of Differential Evolution Algorithms on Constraint Optimization Problems[J].,2010,(12):187.
[5]来磊 卢文科 邓开连.基于二维Tsallis交叉熵直线型图像阈值分割方法[J].计算机技术与发展,2010,(06):105.
 LAI Lei,LU Wen-ke,DENG Kai-lian.New Image Thresholding Segmentation Methods Based on Two-Dimensional Tsallis Cross-Entropy Liner-Type[J].,2010,(12):105.
[6]邹毅 朱晓萍 王秀平.一种基于混沌优化的混合粒子群算法[J].计算机技术与发展,2009,(11):18.
 ZOU Yi,ZHU Xiao-ping,WANG Xiu-ping.A Hybrid PSO Algorithm Based on Chaos Optimization[J].,2009,(12):18.
[7]王为为 程家兴 贺晟.基于佳点集交叉的粒子群算法[J].计算机技术与发展,2009,(12):32.
 WANG Wei-wei,CHENG Jia-xing,HE Sheng.Particle Swarm Algorithm Based on Good Point Set Crossover[J].,2009,(12):32.
[8]贾瑞玉 黄义堂 邢猛.一种动态改变权值的简化粒子群算法[J].计算机技术与发展,2009,(02):137.
 JIA Rui-yu,HUANG Yi-tang,XING Meng.A Modified Simple Particle Swarm Optimization Using Dynamically Decreasing Inertia Weight[J].,2009,(12):137.
[9]卢珊萍 于盛林.基于粒子群算法的细胞神经网络模板参数设计[J].计算机技术与发展,2009,(04):83.
 LU Shan-ping,YU Sheng-lin.A Template Design Method for Cellular Neural Network Based on Particle Swarm Optimizer Algorithm[J].,2009,(12):83.
[10]王艳玲 李龙澍 胡哲.群体智能优化算法[J].计算机技术与发展,2008,(08):114.
 WANG Yan-ling,LI Long-shu,HU Zhe.Swarm Intelligence Optimization Algorithm[J].,2008,(12):114.

备注/Memo

备注/Memo:
工信部青年科技创新基金(Y1089-081)焉为家(1985-),男,硕士研究生,CCF会员,研究方向为生物智能优化;郭雨珍,副教授,硕士生导师,研究方向为生物信息的优化应用
更新日期/Last Update: 1900-01-01