[1]李楠 谢娟英.基于邻域粗糙集的增量特征选择[J].计算机技术与发展,2011,(11):149-152.
 LI Nan,XIE Juan-ying.A Feature Subset Selection Algorithm .Based on Neighborhood Rough Set for Incremental Updating Datasets[J].,2011,(11):149-152.
点击复制

基于邻域粗糙集的增量特征选择()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2011年11期
页码:
149-152
栏目:
智能、算法、系统工程
出版日期:
1900-01-01

文章信息/Info

Title:
A Feature Subset Selection Algorithm .Based on Neighborhood Rough Set for Incremental Updating Datasets
文章编号:
1673-629X(2011)11-0149-04
作者:
李楠12 谢娟英1
[1]陕西师范大学计算机科学学院[2]商洛学院计算机科学系
Author(s):
LI Nan XIE Juan-ying
[1]School of Computer Science, Shaanxi Normal University[2]Department of Computer Science, Shangluo College
关键词:
邻域粗糙集增量式更新特征选择正域
Keywords:
neighborhood rough set incremental updating feature subset selection positive
分类号:
TP301.6
文献标志码:
A
摘要:
针对连续型属性的数据集,当有新样本加入时,可能引起最佳属性约简子集变化的问题。提出了基于邻域粗糙集的特征子集增量式更新方法。根据新增样本对正域的影响,分情况对原数据集的属性约简子集进行动态更新,以便得到增加样本后的新数据的最佳属性约简子集。这种对原约简集合进行的有选择的动态更新可以有效地避免重复操作,降低算法复杂度,只有在最坏的情况下才需要对整个数据集进行重新约简。并以一个实例进行分析说明。实例分析表明,先对新增样本进行分析,然后选择性对新数据集进行约简可以有效地避免重复操作,得到新数据集的最佳属性约简子集
Abstract:
A feature subset selection algorithm is presented based on neighborhood rough set theory for the datasets which are updated by the increment in their samples. It is well known that the increment in samples can cause the changeable in the reduction of attributes of the dataset. Did a through-paced analysis to the variety on positive region brought by the new added sample to the dataset,and discussed the selective updating to the feature subset ( attribute reduction) according to all the cases. The selective updating to the original reduction of attributes of the dataset can avoid the unwanted operations, and reduce the complexity of the feature subset selection algorithm. Finally, gave a real example and demonstrated the algorithm

相似文献/References:

[1]杨学兵 安红梅.一种高效的关联规则增量式更新算法[J].计算机技术与发展,2007,(01):108.
 YANG Xue-bing,AN Hong-mei.An Efficient Incremental Updating Algorithm for Mining Association Rules[J].,2007,(11):108.
[2]郭有强.增量式频集快速维护算法研究[J].计算机技术与发展,2007,(11):74.
 GUO You-qiang.Study of Incremental Rapid Frequent Maintenance Algorithm for Itemsets[J].,2007,(11):74.
[3]吴汉卿[],吴缓缓[],杨莹莹[],等. 基于粗糙集的大学生学习与就业关系分析[J].计算机技术与发展,2017,27(05):188.
 WU Han-qing[],WU Huan-huan[],YANG Ying-ying[],et al. Relationship Analysis of Undergraduate Students’ School Records versus Employment Based on Rough Set[J].,2017,27(11):188.
[4]张海翔,李培培,胡学钢.基于自适应密度邻域关系的多标签在线流特征选择[J].计算机技术与发展,2024,34(01):23.[doi:10. 3969 / j. issn. 1673-629X. 2024. 01. 004]
 ZHANG Hai-xiang,LI Pei-pei,HU Xue-gang.Multi-label Online Stream Feature Selection Based on Adaptive Density Neighborhood Relation[J].,2024,34(11):23.[doi:10. 3969 / j. issn. 1673-629X. 2024. 01. 004]

备注/Memo

备注/Memo:
中央高校基本科研业务费专项资金重点项目(GK200901006);陕西省自然科学基础研究计划项目(2010JM3004);中央高校基本科研业务费专项资金项目(GK201001003)李楠(1981-),女,陕西澄城人,硕士研究生,研究方向为机器学习、计算智能、模式识别与数据挖掘;谢娟英,副教授,硕士生导师,研究方向为机器学习、计算智能、模式识别与数据挖掘
更新日期/Last Update: 1900-01-01