[1]翟继友 张鹏.高斯混合模型参数估值算法的优化[J].计算机技术与发展,2011,(11):145-148.
 ZHAI Ji-you,ZHANG Peng.Optimization of Parameter Estimation Based on Gaussian Mixture Model[J].,2011,(11):145-148.
点击复制

高斯混合模型参数估值算法的优化()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2011年11期
页码:
145-148
栏目:
智能、算法、系统工程
出版日期:
1900-01-01

文章信息/Info

Title:
Optimization of Parameter Estimation Based on Gaussian Mixture Model
文章编号:
1673-629X(2011)11-0145-04
作者:
翟继友1 张鹏2
[1]南京工程学院[2]南京邮电大学
Author(s):
ZHAI Ji-you ZHANG Peng
[1]Nanjing Institute of Technology[2]Nanjing University of Posts and Telecommunications
关键词:
EM算法高斯混合模型语音转换
Keywords:
EM algorithmGMMvoice conversion
分类号:
TP301.6
文献标志码:
A
摘要:
EM算法是高斯混合模型参数估值的常用方法,该算法有局部收敛的特性,易造成模型的参数估计对于初值较为敏感,往往得到一个局部的最优值。为了对EM算法进行优化,文中将具有全局寻优和并行搜索特性的遗传算法与EM算法相结合,对其加以改进,并用到语音转换过程之中,最后通过仿真实验分析了算法的性能,结果表明使用优化算法得出的高斯混合模型所转换出来的语音,相对于传统EM估计算法得出的高斯混合模型所转换出来的语音,具有较小的失真测度值,证明使用该优化算法能够改善转换后的语音质量
Abstract:
EM algorithm is a common method to estimate the parameters of GMM. For its local convergence property,the EM algorithm is sensitive to the initial values and consequently lead to a subprime value. In order to optimize EM algorithm,combine the genetic algo- rithra with EM algorithm to improve it. Apply genetic algorithm parallel search and global optimization characteristics to voice conversion process. Compared with the traditional EM algorithm,the simulation results show that the improved algorithm has a small distortion measure values. So, the proposod method can improve the converted voice quality

相似文献/References:

[1]周瑛 张铃.有限混合模型在文本分类中的应用研究[J].计算机技术与发展,2010,(06):18.
 ZHOU Ying,ZHANG Ling.Study of Application of Finite Mixture Model in Text Classification[J].,2010,(11):18.
[2]王爱平 张功营 刘方.EM算法研究与应用[J].计算机技术与发展,2009,(09):108.
 WANG Ai-ping,ZHANG Gong-ying,LIU Fang.Research and Application of EM Algorithm[J].,2009,(11):108.
[3]陈东泳 钟尚平.基于半监督学习的JPEG图像通用隐写检测方法[J].计算机技术与发展,2009,(02):169.
 CHEN Dong-yong,ZHONG Shang-ping.A Universal Steganalysis Method for JPEG Images Based on Semi - supervised Learning[J].,2009,(11):169.
[4]吴庆棋 林江云.基于聚类优化GMM提高说话人识别性能的研究[J].计算机技术与发展,2009,(04):35.
 WU Qing-qi,LIN Jiang-yun.A Study on GMM Optimization with Clustering for Improving Speaker Recognition[J].,2009,(11):35.
[5]刘大鹏 尾关和彦 朱庆生.添加音素持续时间信息到频谱模型的说话人辨认研究[J].计算机技术与发展,2007,(05):156.
 LIU Da-peng,Kazuhiko Ozeki,ZHU Qing-sheng.Adding Phoneme Duration Information to Spectral Model : in Speaker Identification[J].,2007,(11):156.
[6]赵青 成谢锋 朱冬梅.基于改进MFCC和短时能量的咳嗽音身份识别[J].计算机技术与发展,2012,(06):82.
 ZHAO Qing,CHENG Xie-feng,ZHU Dong-mei.Cough Sound Identification Based on Improved MFCC and Short-time Energy[J].,2012,(11):82.
[7]李燕萍 张玲华.基于多时间尺度韵律特征分析的语音转换研究[J].计算机技术与发展,2012,(12):67.
 LI Yan-ping,ZHANG Ling-hua.Voice Conversion Research Based on Multi-time Scale Prosodic Feature Analysis[J].,2012,(11):67.
[8]辛月兰.基于超像素的Grabcut彩色图像分割[J].计算机技术与发展,2013,(07):48.
 XIN Yue-lan.Superpixel-based Grabcut Color Image Segmentation[J].,2013,(11):48.
[9]黄景星,吴伟隆,龙楚君,等.基于OpenCV的视频运动目标检测及其应用研究[J].计算机技术与发展,2014,24(03):15.
 HUANG Jing-xing,WU Wei-long,Long Chu-jun,et al.Study of Moving Object Detection in Video and Its Application Based on OpenCV[J].,2014,24(11):15.
[10]高蕾[],曹建忠[]. 基于可穿戴传感器的行为识别随机逼近模型[J].计算机技术与发展,2014,24(12):83.
 GAO Lei[],CAO Jian-zhong[]. Activity Recognition Using Stochastic Approximation Model Based on Wearable Sensor[J].,2014,24(11):83.

备注/Memo

备注/Memo:
南京工程学院高教研究重大课题(GY200802)翟继友(1978-),男,江苏徐州人,硕士,研究方向为计算机通信与网间互连、流媒体
更新日期/Last Update: 1900-01-01