[1]唐德权 张悦 贺永恒 肖自红.基于图数据挖掘算法的犯罪规律研究及应用[J].计算机技术与发展,2011,(11):89-91.
 TANG De-quail. ZHANG Yue,HE Yong-heng,XIAO Zi-hong.Research and Application on Crime Rule Based on Graph Data Mining Algorithm[J].,2011,(11):89-91.
点击复制

基于图数据挖掘算法的犯罪规律研究及应用()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2011年11期
页码:
89-91
栏目:
智能、算法、系统工程
出版日期:
1900-01-01

文章信息/Info

Title:
Research and Application on Crime Rule Based on Graph Data Mining Algorithm
文章编号:
1673-629X(2011)11-0089-03
作者:
唐德权 张悦 贺永恒 肖自红
湖南警察学院计算机系
Author(s):
TANG De-quail. ZHANG Yue HE Yong-heng XIAO Zi-hong
Computer Science Department,Hunan Police Academy
关键词:
数据挖掘频繁子图犯罪规律核心成员关联知识
Keywords:
data mining frequent subgraph crime rule key members association knowledge
分类号:
TP311.2
文献标志码:
A
摘要:
数据挖掘应用于犯罪集团或恐怖组织社会网络结构分析已经成为公安信息系统领域的研究热点,国内外在分析犯罪和恐怖组织之间的内在规律方面的研究工作亟待深入。与一般的数据挖掘技术相比,图能够表达更加丰富的语义,基于图数据挖掘技术应用于犯罪规律研究是一种新兴的研究方法。为了挖掘犯罪规律和频繁出现的核心成员,首先提出了基于图数据挖掘的相关理论,然后提出了基于相同犯罪特征频繁子图结构的挖掘犯罪规律算法GDMCR(GraphDataMiningCrimeRule),最后利用GDMCR算法得到的频繁子图关联知识分析犯罪规律及网络核心成员。实验证明了文中提出的基于图数据挖掘犯罪规律分析系统的有效性和实用性,并验证了GDMCR算法的有效性
Abstract:
The data mining technologies applying to analyze the crime rule has become a hot spot in field of the public security information system, there is little work being done on analyzing the crime rule of criminal and terrorist groups. Compared with other data technology, graph can express richer semantic meaning. It is a new paradigm to apply based on graph data raining algorithm to analyze the crime rules. To mine crime rule and key members of a crime group, first proposed theory based on graph data mining, then proposed a frequent subgraph of same crime characteristics based algorithm called GDMCR ( Graph Data Mining Crime Rule ), finally employed frequent subgraph analysis techniques to discover crime rule and key structure. The experimental results show the efficiency and usability of the crime rule analysis system based on graph data mining, and demonstrate that GDMCR is efficient

相似文献/References:

[1]项响琴 汪彩梅.基于聚类高维空间算法的离群数据挖掘技术研究[J].计算机技术与发展,2010,(01):120.
 XIANG Xiang-qin,WANG Cai-mei.Study of Outlier Data Mining Based on CLIQUE Algorithm[J].,2010,(11):120.
[2]李雷 丁亚丽 罗红旗.基于规则约束制导的入侵检测研究[J].计算机技术与发展,2010,(03):143.
 LI Lei,DING Ya-li,LUO Hong-qi.Intrusion Detection Technology Research Based on Homing - Constraint Rule[J].,2010,(11):143.
[3]吉同路 柏永飞 王立松.住宅与房地产电子政务中数据挖掘的应用研究[J].计算机技术与发展,2010,(01):235.
 JI Tong-lu,BAI Yong-fei,WANG Li-song.Study and Application of Data Mining in E-government of House and Real Estate Industry[J].,2010,(11):235.
[4]杨静 张楠男 李建 刘延明 梁美红.决策树算法的研究与应用[J].计算机技术与发展,2010,(02):114.
 YANG Jing,ZHANG Nan-nan,LI Jian,et al.Research and Application of Decision Tree Algorithm[J].,2010,(11):114.
[5]赵裕啸 倪志伟 王园园 伍章俊.SQL Server 2005数据挖掘技术在证券客户忠诚度的应用[J].计算机技术与发展,2010,(02):229.
 ZHAO Yu-xiao,NI Zhi-wei,WANG Yuan-yuan,et al.Application of Data Mining Technology of SQL Server 2005 in Customer Loyalty Model in Securities Industry[J].,2010,(11):229.
[6]张笑达 徐立臻.一种改进的基于矩阵的频繁项集挖掘算法[J].计算机技术与发展,2010,(04):93.
 ZHANG Xiao-da,XU Li-zhen.An Advanced Frequent Itemsets Mining Algorithm Based on Matrix[J].,2010,(11):93.
[7]王爱平 王占凤 陶嗣干 燕飞飞.数据挖掘中常用关联规则挖掘算法[J].计算机技术与发展,2010,(04):105.
 WANG Ai-ping,WANG Zhan-feng,TAO Si-gan,et al.Common Algorithms of Association Rules Mining in Data Mining[J].,2010,(11):105.
[8]张广路 雷景生 吴兴惠.一种改进的Apriori关联规则挖掘算法(英文)[J].计算机技术与发展,2010,(06):84.
 ZHANG Guang-lu,LEI Jing-sheng,WU Xing-hui.An Improved Apriori Algorithm for Mining Association Rules[J].,2010,(11):84.
[9]吴楠 胡学钢.基于聚类分区的序列模式挖掘算法研究[J].计算机技术与发展,2010,(06):109.
 WU Nan,HU Xue-gang.Research on Clustering Partition-Based Approach of Sequential Pattern Mining[J].,2010,(11):109.
[10]吴青 傅秀芬.水平分布数据库的正负关联规则挖掘[J].计算机技术与发展,2010,(06):113.
 WU Qing,FU Xiu-fen.Positive and Negative Association Rules Mining on Horizontally Partitioned Database[J].,2010,(11):113.

备注/Memo

备注/Memo:
湖南省教育厅资助科研项目(100)134);湖南省自然科学基金(06JJS0107);湖南省教育厅重点项目基金(10A074)唐德权(1979-),男,讲师,硕士,研究方向为信息安全、数据挖掘
更新日期/Last Update: 1900-01-01