[1]罗晓 于磊 罗谦.基于新的条件熵的入侵检测算法[J].计算机技术与发展,2011,(08):237-240.
 LUO Xiao,YU Lei,LUO Qian.Adaptive Intrusion Detection Algorithm Based on New Conditional Entropy[J].,2011,(08):237-240.
点击复制

基于新的条件熵的入侵检测算法()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2011年08期
页码:
237-240
栏目:
安全与防范
出版日期:
1900-01-01

文章信息/Info

Title:
Adaptive Intrusion Detection Algorithm Based on New Conditional Entropy
文章编号:
1673-629X(2011)08-0237-04
作者:
罗晓1 于磊12 罗谦1
[1]中国民用航空局第二研究所[2]西南交通大学信息科学与技术学院
Author(s):
LUO XiaoYU LeiLUO Qian
[1]The Second Research Institute of CAAC[2]School of Information Science and Technology,Southwest Jiaotong University
关键词:
新的条件熵离散化入侵检测知识约减
Keywords:
new conditional entropy discretization intrusion detection knowledge reduction
分类号:
TP393.08
文献标志码:
A
摘要:
在分析了现有的入侵检测方法的基础上,为了降低入侵检测系统的错检率、降低漏检率和提高实时性,提出了一种新的检测方法:基于新的条件熵的入侵检测算法。本算法在考虑信息论有关理论的基础上,利用信息熵的知识对收集到的数据进行离散化。通过分析离散化后的数据,利用新的条件熵的知识约简方法去除冗余属性,生成检测规则,然后用来分析入侵数据。实验结果表明:基于新的条件熵的入侵检测算法与基于BP神经网络和支持向量机的入侵检测算法比较,可以有效地提高入侵检测系统的检测率,降低错检率。该算法的检测率提高7%左右,能为信息系统提供很好的入侵检测服务
Abstract:
Based on the analysis of the current intrusion detection approaches,existing security detection systems have many problems such as wrong detection of intrusions,missed intrusions,poor real-time performance,bring up a new detection method,namely adaptive intrusion detection algorithm based on new conditional entropy.In considering the theories related to information theory,this algorithm firstly discrete the collected data use the knowledge of information entropy,then analyze the discrete data,remove the redundant attributes by reduction method related to conditional entropy knowledge,finally generate a new detection rules for the further analysis of intrusion data.The experimental result shows that is more efficient than algorithms based on BP neural networks and vector machines;thereby,this detection algorithm can effectively improve the intrusion detection system's detection rate,and reduce the error detection rate,and this detection algorithm can improve the detection ratio by about 7% and reduce the wrong detection ratio.The system provides detection service effective for information systems,as well

相似文献/References:

[1]张政超 关欣[] 何友 李应升 郭伟峰.粗糙集理论数据处理方法及其研究[J].计算机技术与发展,2010,(04):12.
 ZHANG Zheng-chao,GUAN Xin[],HE You,et al.Rough Sets Data Processing Method and Its Research[J].,2010,(08):12.
[2]王伟 高亮 吴涛.一种基于模糊聚类的离散化方法[J].计算机技术与发展,2008,(03):53.
 WANG Wei,GAO Liang,WU Tao.Discretization of Continuous Attributes Based on Fuzzy Cluster[J].,2008,(08):53.
[3]洪菁 陈强 刘惠彬.一种基于改进粗糙集模型的归纳学习方法[J].计算机技术与发展,2006,(10):32.
 HONG Jing,CHEN Oiang,LIU Hui-bin.An Inductive Learning Approach Based on Modified Rough Set[J].,2006,(08):32.
[4]鄂旭[],杨健[],王欣铨[],等. 水产品安全信息系统中属性离散化方法研究[J].计算机技术与发展,2014,24(07):178.
 E Xu[],YANG Jian[],WANG Xin-quan[],et al. Research on Discretization Method in Aquatic Product Safety Information System[J].,2014,24(08):178.
[5]马青宇,邵松帅,刘博旭,等.基于改进麻雀搜索算法的冷链物流路径优化[J].计算机技术与发展,2024,34(03):125.[doi:10. 3969 / j. issn. 1673-629X. 2024. 03. 019]
 MA Qing-yu,SHAO Song-shuai,LIU Bo-xu,et al.Optimization of Cold Chain Logistics Path Based on Improved Sparrow Search Algorithm[J].,2024,34(08):125.[doi:10. 3969 / j. issn. 1673-629X. 2024. 03. 019]

备注/Memo

备注/Memo:
中国民用航空局科研项目(MHRD200924)罗晓(1970-),男,高级工程师,主要研究领域为机场信息集成技术、计算机仿真、数据库技术;于磊,硕士研究生,主要研究领域为粒计算、人工智能;罗谦,博士研究生,主要研究领域为数据挖掘、进化计算、企业智能计算
更新日期/Last Update: 1900-01-01