[1]黄正午 孔峰 杨琴.基于神经网络PID电子负载控制系统设计[J].计算机技术与发展,2011,(04):183-186.
 HUANG Zheng-wu,KONG Feng,YANG Qin.Design of Electronic Load Control System Based on Neural Network PID[J].,2011,(04):183-186.
点击复制

基于神经网络PID电子负载控制系统设计()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2011年04期
页码:
183-186
栏目:
应用开发研究
出版日期:
1900-01-01

文章信息/Info

Title:
Design of Electronic Load Control System Based on Neural Network PID
文章编号:
1673-629X(2011)04-0183-04
作者:
黄正午 孔峰 杨琴
广西工学院电子信息与控制工程系
Author(s):
HUANG Zheng-wuKONG FengYANG Qin
Department of Electronic Information and Control Engineering,Guangxi University of Technology
关键词:
TMS320F2812神经网络电子负载神经网络PID
Keywords:
TMS320F2812 neural network E-load neural network PID
分类号:
TP311
文献标志码:
A
摘要:
以电子负载为研究对象,针对其控制系统复杂的非线性和时变性,常规的PID控制方法存在着精度低,自适应能力不强等缺点,以定点32位DSPTMS320F2812作为控制芯片,结合神经网络和常规PID设计了一种神经网络PID控制器。仿真结果表明,通过神经网络PID控制器,能够在线调整PID控制参数,使系统具有更小的超调量和更短的调节时间,而且系统的精度和稳定性也得到大大的提高。神经网络PID控制器是一种动态特性和静态特性良好的控制器,在电子负载控制实验中可以获得满意的控制效果
Abstract:
Electronic load as the research object,in view of its control system of complex non-linear and dynamicity,conventional PID control methods exist low accuracy,adaptive capability is not strong and other shortcomings.To fixed-point 32-bit DSPTMS320F2812 as control chip,combined with neural network and the conventional PID designed a kind of neural network PID controller.The result of simulation indicates that neural network PID controller can adjust PID controlling parameters on line,then the system could have smaller overshoot and shorter settling time,and the precision and stability of the system has also been greatly enhanced.Such controller is a controller with good dynamic characteristics and static characteristics,a satisfactory control effect is obtained in the experiment of the electronic load system

相似文献/References:

[1]路川 胡欣杰.区域航空市场航线客流量预测研究[J].计算机技术与发展,2010,(04):84.
 LU Chuan,HU Xin-jie.Analysis of Regional Airline Passenger Forecast Title[J].,2010,(04):84.
[2]高峥 陈蜀宇 李国勇.混合入侵检测系统的研究[J].计算机技术与发展,2010,(06):148.
 GAO Zheng,CHEN Shu-yu,LI Guo-yong.Research of a Hybrid Intrusion Detection System[J].,2010,(04):148.
[3]包力伟 周俊.铸锻企业生产质量控制系统的开发[J].计算机技术与发展,2008,(04):174.
 BAO Li-wei,ZHOU Jun.Development of a Manufacture Quality Control System in Casting Company[J].,2008,(04):174.
[4]李志俊 程家兴 金奎 饶玉佳.基于样本期望训练数的BP神经网络改进研究[J].计算机技术与发展,2009,(05):103.
 LI Zhi-jun,CHENG Jia-xing,JIN Kui,et al.BP Algorithm Improvement Based on Sample Expected Training Number[J].,2009,(04):103.
[5]李龙澍 葛瑞峰 王慧萍.基于神经网络的批强化学习在Robocup中的应用[J].计算机技术与发展,2009,(07):98.
 LI Long-shu,GE Rui-feng,WANG Hui-ping.Application of Batch Reinforcement Learning Based on NN to Robocup[J].,2009,(04):98.
[6]贾志先.神经网络在空白试卷识别中的应用[J].计算机技术与发展,2009,(08):208.
 JIA Zhi-xian.Application of Neural Network in Recognization Blank Examination Paper[J].,2009,(04):208.
[7]肖宜龙 路游 亓永刚.基于神经网络的NURBS曲面重建[J].计算机技术与发展,2009,(09):65.
 XIAO Yi-long,LU You,QI Yong-gang.NURBS Surface Reconstruction Based on Neural Network[J].,2009,(04):65.
[8]蔡秋茹 罗烨 柳益君 叶飞跃.企业资信的BP神经网络评估模型研究[J].计算机技术与发展,2009,(10):117.
 CAI Qiu-ru,LUO Ye,LIU Yi-jun,et al.Research on BP Neural Network Model for Corporation Credit Rating[J].,2009,(04):117.
[9]王晓敏 刘希玉 戴芬.BP神经网络预测算法的改进及应用[J].计算机技术与发展,2009,(11):64.
 WANG Xiao-min,LIU Xi-yu,DAI Fen.Improvement and Application of BP Neural Network Forecasting Algorithm[J].,2009,(04):64.
[10]崔海青 刘希玉.基于粒子群算法的RBF网络参数优化算法[J].计算机技术与发展,2009,(12):117.
 CUI Hai-qing,LIU Xi-yu.Parameter Optimization Algorithm of RBF Neural Network Based on PSO Algorithm[J].,2009,(04):117.

备注/Memo

备注/Memo:
广西自治区教育创新计划资助项目(2008105940814M03)黄正午(1985-),男,湖北黄梅人,硕士研究生,研究方向为电子负载研究;孔峰,教授,研究方向为神经网络
更新日期/Last Update: 1900-01-01